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This paper cxamin mod I for choice behaviour m a two-alternative 
forced-choice detection t The model i r trictcd to experimental situations 

where the subject i hen fcedb ck on e,.ery trial regarding the correctness of 
his response, and to ituntion with a imple outcome tructurc. Thus the model 
has a limited ran c of nppli bility, but for appropriately contriYed experiments 

it appears to pro,.idc n ccur tc account of the gro n pects of the data and 
certain sequential c:ff cc • 111c model rcpr cnt a pccial ca e of a more general 
theory proposed b • J.,ucc (1963); it i lso ,·cry imilar in most details to a model 
of forced-choice bcha,iour prop cd by tkinson ( 1963). The relations of the 
model developed in th' p per to th e other theor ies of detection behaviour are 
examined in some d tail b) Atkin on, 13owcr and Crothers (1965, Chapter 5); 
they also discu th rel tion of the model to various theories that have been 

proposed for prob bility learnin e pcrimcnt . 
The model tulat th t th ob crvahle relations between stimulus events 

and re.;pon arc a product of t�o proc cs: a cnsory process and a d�cision 

process. The en ry pr pecifi the relation l�ctwccn the extc
_
r�al stimulus 

event and h)1)0thctical sensory tatcs of the subJcct. The deci5 ,on process 

'Support for thi rcscarch ,,,u pl'O'idcd by the =-:ational Aeronautics and Space Adminiatration, 

no. �GR--05--020-036. 



184 R. C. Atkinson and R. A. Kinchla

specifies the subject's response in terms of hi currcn_t cnsory �ate and }�forma­

tion that he has acquired during the course of a given experiment. I he t�,-o

processes interact as follows: the stimulus i fc? into the � ory pr� \\h1ch

conYerts the pattern of external energy changes mto en ory_mforma!1on (sensory
eYents); the decision process then operates o_n the en Or)' anformauon. to deter­
mine a response. Some theories of detection ha\'c n_ urned n continuum of
sensory states (Green, 1960; S\\cts, 1961; 'l'nnncr and S\\ct , 1954), \\hcrcas
others have argued for a finite representation (Atkin on, Cnrtcrctte and l'inchla,
1962; Fechner, 1860; Luce, 1963; .1. rormnn, 1964). Further, orne ha\c propo ed 
that the sensory process is static over trial , \\ hereas others ha, c a urned that
it yaries within certain fixed limits from trial to trinl a a function of preceding
events (Atkinson, 1963). One point of agreement among all theories is that the 
decision process is dynamic, an<l undergoes change \\hen the perimentcr 
manipulates the presentation schedule or outcome structure. llo\\C\Cr, for a 
given experimental schedule some theories treat the <led ion proc a fixed 
(independent oYer trials), wherca:s other repn.-scnt it a changing from trial to 
trial as a function of the particular sequence of preceding e,•ent . Thi latter 
way of representing the decision process is an important fcnture of the model 
considered in this paper. The subject is viewed ns adopting a pattern of dcci ion 
making in each experimental situation by means of a implc todtn tic learning 
mechanism. The learning mechanism that will be examined i imilar to those 
proposed by Bush and :\losteller ( 1955).

As noted above, the type of psychophysical situation that we hall con ider 
is a two-alternative forced-choice detection experiment. On each trial two 
temporal intervals are defined and the subject is in tructed to report \\hich 
interval contains a signal. It is a forced-choice ta k in that on each trial the 
subject _must select one of the two intervals a5 containing a signal c,·cn if he is
uncertain as to what occurred. The presentation of a signal plu_ noise in the 
first interval and noise alone in the second inter\'al on trial n will he denoted as 
�1.11 and the pre�entation of noii;e in the first obsc.:n ation interval follo,\ed by
signal plus n_o1se m the second observation interYal as S 1 "' Further, the object's
responses will be denoted A 1 ,n and A 1, 11 to indicate which interval he reported 
contained the signal on trial n. Finally, E1 ,n and E2,11 will denote the occurrence 
of an event at the end of trial n informing the subiect that stimulu S or S 

. 1 
J 1 1, respective y, was presented. Thus 

St,n = the presentation of stimulus S1 on trial n, 
A1,11 =the occurrence of response A1 on trial n, 
Ek,n = information event at the end of trial n indicating that stimulus

S1i: was presented. 
Using this no!ation each trial can be d:scribed by the ordered triple Sc, .·1,, E1:)

_In experiments of the type described above the following variables can bemanipulated: (a) physical parameters of the signal and noise; (b) presentationschedule of signal events; (c) information feedback; and (d) the outcome structure
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"hida ��tiics • d \\ ith correct and incorrect responses. In
ri hi intlucnce detection bcha\'iour 

only \\ith manipulations im·olvin� 
tio hack. The prt entntion of signal 

cun ,iii hcdule; namely, c,ents S1 and S2 \\tll h tcr y. h1rthcr, the C'\pcriments 
empt •1 ,jen i in tructcd to make a correct 
r h trial terminate \\ith an information event 
\\ht correct or not. There arc no monetary payoffs 
or correct r pon cs a frequently the case in 
dct 

\ ri hi i the probability of an A1 response on trial 
curr d. Th four outcome can he represented by 

A,. 

p • s •.• [Pr(A1,11 I l,fl}
s.,'11 Pr( 1,fl IS , } 

(1) 

'lbtHnatn 111 l II d theprformanr:t matrix. In the literature the occurrence 
of an A 1 

r to an • timulu i called a hit, and the occurrence of A1 
response to an 

I 
umulu t lied false alarm. We :;hall use this terminology, 

dcnoun them /111 nd F,., i.e., 

Pr(/111) • I'r(A 1., Sa ,.) 
l'r(Fn ) • Pr(A 1 ,n I S1,,.). 

J'ixing Pr(/1 ) and I ,(F ) then completely specifics the perform�nce matrix. 
he:r q:anuta of :;ter t 'can b defined in terms of the hits and fal_selI l b·t·t of an A response on tna alarms. I r qucntl , ':lilt to kno,, t 1c pro ,a 1 1 Y 1 

n indcpcndc:nt of th imulu e,ent; namely, 
(2) Pr(Aa,n) • /'r(//n)I'r(S 1 ,")+ I'r(F,.)Pr(St,n), 

Also of inter t i the prob bility of n correct re ponse on trial n (which is

denoted C.): 
Pr( ,.)• P,(H }Pr(S1 ,n} + [1 -Pr(F ,.)]Pr(S,.n), (3) 

2. A 'D Rm.ES OP loENTIFICATION 

Stm01y and l)etision P,ousses 
t can occur on each 

I and only one sensory sta e 
The model a um t Ult one 

,·11 be denoted as so, s1, si, sa, . ... 
trial of th experiment. The n ory tatcs '� 1 

cessarily results whenever a 
h h me en ory state ne . d b We do not 1up t at t c 

� 1 1 t the state is deterrrune Y a • • 1 • ted hut rat icr t la . t n be parucul r tamu u I pr en • 
• I of an expenmcn ca 

• rocess on tna n 
random p The sensory. P 
repr tcd by the 1msory matrix 
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So S1 
s, • • • Sz 

S1 
[a\"J aW a\1 a�"i]Sn s

'/. 
a�':/ afill t4il ... at) ' . . 

where a"'> denotes the probability of eliciting . en ory tate SJ on trial n g�v�n 

stimulu/ S, on that trial. Similarly, the decision process can be reprcsente y

the matrix 
A1 A, 

So d'">01 d'IJ'i 
S1 den> 11 

d<"> 
I! 

St d<n>21 d�} 

Dn

s, d�1> d<:i , 

where d("> is the probability of eliciting respon,e A, on trial n given sensory ,1 • ·n 1 1 (1) · state s, on that trial. Then the performance matrix . pec1 1ec ))' eqn . is
obtained by taking the product of the sensory matrix and the deci ion matrix; i.e.,

P,. S,. Dn . 

The model that we shall examine postulates three sensory states for the 

two-alternative forced-choice task: 
s0 = no detection 

s1 = detection in observation interval 1
s1 = detect ion in observation interval 2.

Further, the activation process and the decision process are defined by the 

following matrices:
So 

Sn= S1 [1-u
S1 1-u

A1
·r· Dn= s1 1 
s, 0 

S1 s, 

a 
�]0 

A, 

l�P•J

1 . 

(4) 

(5) 

There are several points to note about these matrices. Fir. t, the entries in Snare constants independent of the trial number; thus the en ory process is
assumed to be fixed over all trials of the experiment. I n contra t, the decision 

process may vary as a function of the trial number, and thi dependence is
indicated by affixing the trial index n to p. Al. o, s 1 can occur only if S1 is
presented, and s2 can occur only if S1 is presented. Thus these sensory states
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�ave an u�ambiguou .. r l tion to the timulu , ince the signal event can be mfer_red with probab1lu • J hen they occur. In contra t, cnsory state s0 is ambiguously related to the tnnul� , for . it <:3n occur following either signal e\ent. The parameter o ch rn t ri:r.c tlu amulu arnhiguity in the output of the sensory S) tern. Both I of imulu information due to external noiseand loss_ due to lin�it t1011 on th . r oh in po\\er of the en ory . }'Stem arcs�mmanzed by u. l11u o m y he mt rpr ted a n mea urc both of the physicalstimulus and of the ubjcct'a n ith ity; a \\ ill he referred to as the smsilit,·ity

parameter. 
The decision matri D reflect the rd tive amhi uity of the sensory states.If the subject's in truction r lo mnk n A 1 rcspon e given an S1 stimulus, then the correct re pon 1 completely d termine<l ,, hen an s 1 or s1 sensory state occurs. However, the uhje f c dilemma if he mu t make a re�ponsc on 

the basis of s0 ; either timulu could hine e,oked s0, o the uhject needs some 
�trategy by which he can r ohc the mbiguity and elect a re pon.e. The 
quantity Pn is a m urc of the ubject' tendency to resolve the ambiguity by 
making an A

1 
rcspon mth r ti n n A

1 ; Pn \\ill be referred to as the response 
bias on trial n. 

For the experimental ,'llri bl di cu ed earlier it will be assumed that the
presentation schedule, inform tion fe dback and the outcome structure influence 
Pn, but do not affect the n ith ity p. r meter c,. Al o, it will be assumed that 
t: .. e sensitivity parameter, for hen ubject, i determined olely by the physical 
aspects of the experimental itu tion. It i , uf cour e, necessary to show 
nperimentally that th int�rpretation arc correct, and to examine how the 
parameters u and p. re rel, tcd to the physical characteristics of a given 
experimental situation. . In order to sec ho\\ the n iti, ity parameter and the bias parameter interact, 
consider the relation bct\\CCn hit nd fol e alarm a one or the other of these 

parameters is manipulated. T kin the product of the ��trices i� eq_ns. (4) and 
(5) yields the performance m tri p11 for this model. l he entries m the first 
column of Pn arc a follow'&: 

Pr(/ln}-(1 - u)p11 + u (6a) 

Pr(Fn)-(l - u)p,.. (6b) 

If C1 is held constant nnd 'Pn is mnnipulated, an e�chang� relation is est�blished 

b P (H ) d Pr(F ) The equation of this relatton can be obtamed byetween r II an n • 
eliminating p,. from eqn. (6)) iclding 

J'r(lln}- u + Pr(Fn)• (7) 

Th if . held con nt (fixed signal and noise le\"els) and Pn is forced to
) 

va
h
ry

us, u is 
1· n schedule outcome structure, etc. , t e 

(manipulations in. the pr entn
l 

10 

1 Id be a linear function with slope 1. 
I . b hit nnd fol e a nrrns iou 

1 d" . re at1on etween. p (II ) and Pr(Fn) under experimenta con ltlons 
Plots of the relation b�t\\cen. � h Id fi ·cd and other variables are allowed to
where the signal-to-noisc rauo l e ix 
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188 . 1 t · tic curves, or more
vary are often referred to as rccch·cr-opcraung-c 1ar c en 
simplv as ROC curves. . . . ·h·rnged there is a

if P is held constant and the sen itt\11)' Jl• r mct�r c. . 
f, (6)

\\ell-defi;ed relation between hits and fat e nlarm . hhnun, t mg a rom eqn. 
yields 

(8) 

/> (// ) ., /',(/·· .. ) \\ J 1c11 Pn is constant and a is 
Plots of the relation bet,, een r ,. anu 
varied are called iso-bias c11rt:es. 

Leaming Process 

As indicated earlier, an importnnt feature of the pre ent analysis is to 
represent changes in the bias prohahilit y in term of lcnrning process of the
type proposed by Bush and �lo teller ( t <>55). \\'c n sumc th.it the bias on trial
n + 1 is a linear function of its \'aluc on trial n. 8pcc1fic. Hy. if s0 

occurs and is
followed by £1 

(i.e., the e,perimenter inform the uhJ t thnt the signal was in
the first interval) then p,. will incn·al:e. If s0 occurs • ml i followed by informa­
tion e,ent E2, then p,, will decrease. For nil other conungcncic:- no change will
occur in P11 • These statements can he sununarizcd • follow : 

{
(1-0)p,. +0, ifs0.n.:·E1 .n 

Pn+i = ( 1 - O')Pn, if S0,n .. • E1,n
p,,, other" i e.

(9) 

where?< 8, 8' � 1. J ustific?tion for this equation i postponed until later. 
f �\ e now want to de�ne an ex pres ion for the c peeled \'alue of p as a 
�nct10� ofh the pres��tauon schedule nnd the en itl\ itv parameter 'i{ecallt a� y_1s t e probability of an S1 .1�n.1l ,cnt :ind 1 0·i 1. · • • 

act1vatmg sensory state So gi\'cn cit lu:r S1 or Sz. 1 lcn c t le probability of
Pr(so,11 & E1 ,11) •y(l -o)
Pr(so.11 & E2 ,,.)ci(l-y)(l -o)Pr(otherwi e) -a. To compute the expected \'aluc of th• h' .. 

weight each of the possible outcomes \i ::� 1;rohab1lit ) on trial n + 1, simply 
occurrence given above. That is the. . .�n cqn. (9) �>y its probability of 
value Pn on trial n is ' cxpectc ,nluc on tnal n 1 given a fixed

E(Pn➔ 1) = y(l -a)[(l - O)pn + O] +(1-y)(l - o) 1 - O' 
=-[1-(1 o){Oy+O'(l } 

( )p,.+apn
It can be shown that P . h -y) ]p,. + Oy(l -o). 
value (Atkinson B " m t e abo\'e equation can he r 1 
first-order differ'enc:':�u:;d �roEthers, 1965). �on qu':

11
:1:�<l byhits exp�cte<l

ion m (p,.) ,, hich hn the ol . "e ave a lmear
E(p )

ut1on 
n P.,.-(p.,. -p1)G"-• 
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p - ,, y+(l -y);/,. (10) 

G-1-(l -a)[Oy+O'(l -y)]
and �-tr /8. 'ot that p , \\hich i defined a lim E(Pn), docs not depend on 

.... the absolute -alu of O nd O' hut only on their ratio. 
Combtntn th r ult in cq n . (Ci) ancl ( l 0) yield 

J',(11 }•a+(l  -a)[p -(/1 ,r; -p 1)G 1

) 

l�(Fn)•(l-a)[p -(p -p 1)G 1].
(11 a) 
(11 b) 

cqu tion it i de r th t hit and fol c alnrms will depend on p
1 at 

r1 of n e pcrimcnt 1 i on; hO\\C\er, over trials the subject's perfor-
mance chan cs at a rntc controlled by the quantity C, and approaches an 
asymptote determined by o nd p . The chan •e in performance predicted by
cqn. (ll) i \\cll-kno,, n pcrimcnt,11 phenomenon. Generally, however, most 
l'C!Carch ,rnr crs hue tend d to i nore the changes that occur at the beginning 
of an apcramc ntal ion, nd in te: d have concentrated on an analysis of data 
after pcrformano h ttlcd do,, n to a table level. For the experiments 

anal} din thi p per \\C h II dopt thi policy; to <lo so makes matters simpler 
btta fc\\ er p rumeters need to he timatcd. Since asymptotic performance 
\\ill be r d in ub qu nt di cu ion , the follov,ing notation will be u seful: 

lim l'r(ll,.)-l'r(11) 
,. .. ., 
lim />r(Fn) ml'r(F). 
,. .. .., 

That is, ymptotic cxpr ion will be indic ate d by simply ?eleting the trial 
ub$cript. 1aking the pproprintc uh titutions in eqn. (11) y ields 

(1 -a)y (12 a) Pr(ll)-a+ y+(l -y);/,
(1-a)y (12b) J>r(F) - y+(l -y)</> 

imilarly, for the y:mptotic pro port ion of correct responses (see eqn. (3))

(l-u)y(2y-1) . (13) Pr(C)-u+(l -y)(l -a)+ y+(l -y)</> '
and for the ymptotic proportion of A 1 

respons� (see eqn. (2)),
y(l -u) (14) 

Pr(A 1)-yu+ y+(l -y)</> ·

p ESE.'1TATJO:-. $CIIEDULE
3. E PERI t iTAL MA "ll'ULATIO:-,; OF TIIE R. • . 

. b. in a forced-choice acoustic
We now examine daui collected from eight su 1ects 

d • levels were held
d . . . d h s ·gnal an noise etcction cxpcnmcnt. In tlus tu y t e 1 
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190 . I \' l '-'S given information• l the uhJcCt \\ n ' • .1 Tl nlvh ut the e�pcrimcnt an( f hi rctiponse. 1e o ; 
con�tant t1r��gca�h trial regarding the torrcctnof t;:rcc Jiffcrent presentation
�t- t l�;;ntal manipulation invo1'cd � te u t took on the following values: cx�;�'utes. The probability, y, of an •"• e,cn •25sc Schedule .A: y-O 

Schedule B: y-O·SO 
Schedule y-0·75·

METIJ01) 

onl\C ut1,e dn)"S. Lach day a subjl'Ct

Test sessions of 350 triPls l"BCh ,,ere run on c 

ion In iuccc ,1ve 3-<lay blocks II

n one of the three sd1edule11 for the entire 
.• h I; ch 3-day block the order \\15 

:;8�j�ct ran one <la)"' on e:1ch of the thn'C clu l
l
lul 

d •, ;' •: �mncnt 1 ions and therefore

randomly determined. 
'l'h� t•xpcnmcnt 111,0 ,c 

e:ich schedule wa run on I\\ e i:eparatc dnrs. t 1 bin ur II> m the subject's hcodphrn cs
Band-limited Gaussian no1 ,. ,�11 pre l n c; 000 c p • 1111usoid11l tom,; the tone " 

throughout a test se:ssion an<l thl• ingnnl " 
d • 

. • 
. of 20 m c. The subject was

00 . 1 d 11" equal fall nn ruie umc 
pn:scnted for I msl·C, me u , .., . 1 I � 1 hta fl hcd on briefly in success1011:

d" 1 . 1 >ll 1 On each tn, t tree ig 
O th seated hcfore a 1�P U} )< n · 

b I l t I ch h ht \\ s on for 10 msec ''1 
a red light, an amber li1,tht, and anothc� nm er ig � •ii,c red light \\O,. simply a ,,aming
a 500 msec delay between each succ \\Con-pen . · 

1 The on!lct of the signal h \ 1 · l ts kfinc<l t\\O ob n uo11 mtcn . 
light, while t c um )Cr 111: •1 ( 

f f the mhcr h ht . ,\ftcr the second ambn 
occurred simultaneou ly ",th the onset O 0"': 0 

, res in a ush-button 
r h . ·nt off the subject had 2·5 sec to mdu:at lu re p on b) P � P 

, ·oct 
,::n:e�

e

undcr the appropri,1te amber Ii •ht. ,\t the conclu mn of the, �e�ponse p�r\ a 

green light flashed on for 700 _m cc above the cornet r spon button. 1 here was a 1 :> cc 

intcrtrinl period, thus each tnal la tt:d for b cc. 

w:scn.Ts 

Table 1 presents the proportion of .11 1 rcspon on both S1 and S2 tr�al 
over the last 250 trials of replication� t\\o through fhe of ea_ch pres;ntat!on 
schedule; thus each estimate is ha cd on 250 x 4 -1,000 trials. 1 �e hr t
replication of each presentation schedule ha been deleted, because w� view the
subject as adapting to the detection ta k on early d.) of the �xpenment a_nd
want to treat his data only after he clearly understand the c.xpenmental routine
and is well practised. Also, the fir:;t IOU trial of each of the subsequent experi­
mental sessions were dcleteJ bccau e, as noted earlier, our analyses are going to 
be restricted to asymptotic performance. 

In this experiment the signal and noi e le\'cl were con tant over all session 
and only the presentation schedule varied. Therefore, a houlJ be fixed through­
out the experiment, but p , should ,·ary with changCJ: in y. It has already been
shown that hits and false alarms should fall on the trai •ht line J>r(ll) = u + Pr(f).
\Ve now wish to fit this equation to the three dat. points corresponding :o
pr�ent_a�ion sche�ules .\, B and C. Figure 1 pre ent plots of Pr(II) and Pr(f)
for md1v1_dual subjects. In order to fit the above equation to the three points f,>r
each subject we use the method of least squares, i.e., u i · selected so that it
minimizes the sum of squared deviations between observed values and tho
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Pr( A

1
). (T he ol>Mrvc<l propo rt i

o ru  

ar c  .in 
pa r e  nt h =

) 
Subject Sd1ffl11leA Sc h,-du l t' JJ 

Srhedule C 
Pr(IJ

) Pr(F ) 
Pr(C) Pr(A1

) 
Pr(//

) 
Pr(F) 

Pr(C}
Pr(A ,) 

J>r(/1) 
Pr(/-") 

/',(C) Pr(,I 
1) 

1 
0·60

1 
0·154 0·785 0·266 0· 744 

0·29 7 0·724 0·52 1 0·877 0·430 0·SOO 0·765 (0·622
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(0·163
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(0·783
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(0·278
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260
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·
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) 0·543 0·125 0·792 0·229 0·680 0 ·262 0·709 0-471 0·832 0·-4 14 0·771 0·727 (0·529
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) 

(0·740
) 3 0·597 0·106 0·820 0·229 

0·716 0·225 0 ·746 0·470 0·849 0·358 0·797 O·i26 (0·626
) 

(0·107) (0·826) 
( 0·237)

(0
·
70 7

) 
(0

·
210

) (0
·

74S

) 
(0

·
459

) (0·842) (0 · 384
) 

(0· 7S6 ) (0· 728
) 4 0·529 0·127 0·787 0·227 

0·669 0 ·267 0·701 0 ·486 0·825 0·-42-4 0·763 0·i25 (0·517) (0·122) (0·788) (0·221) (0 ·649) (0
·

242) 
(0

·
703) (0

·
446

) (0·857) (0-454
) 

(0· 779
) 

(0·756) 5 0·520 0·120 0·790 0·220 
0·658 0·258 0 ·700 0

·
458 0·816 0 ·416 0·758 0·716 (0·546) (0· 142) (0 ·780) (0·243) (0 ·650) (0·24-0) (0

·
705) (0 -445) (

0
·
799) 

(0· 4
1 3

) (0 · 746) (0· 703) 6 0·542 0·141 0·780 0·241 
0·689 0·287 0 ·701 0 ·488 O·Hl 0 ·440 0·771 O·Ul ( 0·547) (0·139) (0·783) (0·241) (0

·
680) (0

·
279) (0 ·701) (0 ·479) 

(0·84
7
) (0·451) (0 ·772

) 

(0· 748
) 7 0·618 0·125 0·810 0·249 0 ·744 0 ·252 0·746 0·498 0·872 0·379 0·809 0·749 (0·627) (0·136) (0·805) (0·259) (0·

742) (0
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F1cuR.B 1. Observed and predicted values for Pr(ll) and Pr(F). 

predicted by the above equation. Applying the least squares method yields the 
estimates of <T that are given in Figure 1 ; these e timates were used to genera�e 
the ROC curves displayed in the figure. As indicated by the figures there 1� 
good agreement between the obsened data points and the predicted ROC 
curves. Recall that the signal and noise levels were the same for all subJects 



A uaming lode/ for Forced-Choice Detection Experiments 193 and con qucntly � r i  tion in u rcpr cnt inter-subject differences in sensitivitylcvcJ. ,�e \\e e\"lllu te the propo cd bins procc with regard to the data presentedm Table I. ote th t if y nd u re fixed in eqn. (12) and</, is varied from Otoco, then the point {P,(F), Pr(/1)] 1110,cs along the ROC curve an d approachesthe IO\\Cr-left �int (0, a) 4, co, and the upper-nght point (1 - o, 1) as� tated d11Tcrcntly, no matter \\here the point may fall on the ROC curve(for Ii ed \"lllu o y nd a) ther c.xi ts a corresponding value of ef,. Hence, ifthe three o n cd po int ( l'r( P), Pr(//)) foll on a straight line with slope 1,then perfect fi of the data c. n be obtained by e:;timating separate values of� for h prcscntati n ch dule. Ho,,c,cr, obtainin n t im. te of </, for each pre:;entation schedule wouldHolatc the b ic n1tion le for the model. In formulating eqn. (9) it was assumedthat 8 and 8' characterize trial-to-trial adju tments to stimulus and informationC\cnts, and did not depend on tltc overall presentation schedule. The values of8 and 8 nuy , ry from ubjcct to ubjcct reflecting individual differences;ho\\e-.cr, for ghcn ubjcct O n<l 8' are a urned to be fixed and invariant withregard to the pr 1 tion hedule and the signal intensity. Earlier it was urned that a \\ independent of the presentation schedule, and the sameconstraint i placed on ,f,. Thu for each subject we want a single estimate of</>
"hich then n be u cd to make prediction for all three presentation schedules.Th ob ened proportion of ,1 1 n.-spon�cs given in Table 1 was used toestimate 4,. Equation (I◄) gi,· the theoretical expression for Pr(AJ; solving
for� )icld 

y(l-u) y 
,J,- [Pr(J'l 1

)-oy](l-y) - 1-y · For each present tion chcdulc we have substituted the �timate� value of u andthe ob n cd , lue of l'r(A ) in the above equation to obtain an estimate of if,. Forexample, for ubjcct 1, o'-o•447, i'r(il,)=0·278, and y =0·25 �n. schedule A;hence ub titutin in the bo,c equation yields /,
A 

=-0·777., Similarly $n and
le can be computed u ing the appropriate value:; of y and Pr(AJ. An overall

TADL 2. EsTl!\tATilS OP</, 

.A 

iA $a ic Subjr.lt "' 
1 0·860 0·777 1·099 0·705 

2 1 ·211) t-162 1·400 1·096 

3 1 ·265 1-155 1·390 1 ·251 

4 1·238 1-324 1·446 0·945 

s 1·329 1·065 1·449 1·472 

1·0 3 1·085 t-147 1 ·018 

1·028 MOS 1 ·016 0·914 7 
1·284 0·775 1·148 1-384 

1·145 1·108 1·280 1·046
vc:ra e 

S.F. 



. d R ... KinchlaR. c. Atkinson an · "·· 194 . 1 ·crage of the three l • h t kan t ,e a,. d . f ..I. obtained for each su lJCCt Y. • "mat� of$ are presente 

estimate o 'I' was
$ $ i ) The \'anou ti · d · eating

:t�:��:\�a7e�ie��a!\;r�ltb:t 1
o�c ul:��c� $tl:ills;:t�;

1 

t!':;n���s 1: :lig�tly
that 8' > 8. The _interp�etauon of t:1�i�� of an A I r ponsc than the E1 e ... ent 

reater effect on mcreasmg t�� pro a / r on e. fas on increasing the probability of ;n " id. 
t�n n be computed for Pr(H),

Using the estimates of CT and .,,, pre ic \4 'l'h c predicted values and
P (F) Pr(C) and Pr(A 1) from c�n_s. (lZ) to ( )._a • Table 1. Also in Figure 1

r ' d t tic· are pr cn tcu m 
ROC the corresponding observ� q�an 

I f J>r(/1) and J>r(J,) re plotted in t�e 
the predicted and obsened ... alue d o . f each pr '11Ution schedule is at the
space In this figure the prcdicte yoint or 

.1 t i e ROC curve. Overall, the. . h d'ct <l iso-b1as curve anu I • 0 I. intersection of t  e pre i e 
d. d d ob cncd ,alut is quite good. n _) correspondence between pre ,cte an . d. anci To a degree, th1Subject 8 appears to dis_r la� ;r�te��:ic

thc�::t��'ll , l�cs in the direction ofsubiect's performance deviate rom ti at •· for fixed CT to maximize' b b T f o rect respon c · 1 , • ' 
optimizing _t�e pro a I ity o a c r !'lub·cct• hould ct the bias parameter at 

the probability of a correct response thei. ( J . ( 13)) If the subject adoptedunit when > l and at zero when 'Y < sec cqn . . ) f his y 'Y th·' the ROC curve would reduce to three points; one at (0, CT • ort strategyh, en 
1 0) for Y > i and a third point for the presentation'Y < i anot er at ( - a, l• h d' 1 h _ 1 Undoubtedly if monetary payoff for correct response sc e u e w ere y- 1· • h · Iand penalties for incorrect responses were introduc�d into t � exper�me�ta 

·t t· more subiects would deviate from the thcorcucal values m the d1rect1ons1 ua 10n, , 1 · · l 
of optimization. \Ve shall return to a discussion of t u point ater. 
Time-order Effect 

In the forced-choice detection task the term time-order effect is used to 

refer to the fact that subjects generally arc more accurate in detecting signal
embedded in the second observation interval than in the first. For example, on schedule B (which has S1 and S, e,ents occurring equally often), every subjecthad a higher probability of being correct "'hen the ignal was in the second interval than in the first interval. In terms of the present analy sis there are t\\O explanations for this time-order effect. One is that the bias parameter tends to favour the A1 response. Hence when sensory sta te s0 i activated, the subje1.:t makes the A, response more frequentl y, "'hich m,..ures that he will ha,e a higher probability of being correct on S1 

than on S1 trial . Another possibility is that the time-order effect o ccurs because the suhJcct's ensitivity level changesfrom one observation interval to the next; specifically, that there are t\\O sensitivity parameters o1 and CT1 associated with the two . intervals and o-1 > c:,1. Thus a time-order effect can be accounted for by po tulating a bias process thattends to favour the A II response, or by postulating a ensory mechanism that imore sensitive to stimuli presented in the second ob cnation interval.Both of these explanations are tenable and one would like to have somemeans for selecting between them; fortunately the model makes quite different 
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prcd1ct1ons drpendin pl nation i offered. If the explanation is in terms f the b1 fun ion ( the · 
1 • 

ROC t-... 
• 

an our nnn) i of the c data) then the 
cun-c uu ope l and the tune-ord r effect i imply due to the fact that 9>1. lf,ho ,er.th c • 1 • d' 

then 
I exp me m term of diflcrent sensitivity levels, 

Pr(ll)•o1 +(l -o1)p 
/7(1') •(1-oJp. 

lJndcr these conditions th R cunc i 
1-o 

I>r(/1)• .._..._! Pr(P)+ a1• 

l -o1 

If 01 > 01 th� dope of the R cune i greater than one . Thus to decide 

\\hcther the ttrnc-ord r cffc t i du to the hia process alone, or "hether it also 

may be due to diffcrcnti I en iti\ity le,cl , ,,c mu t determine whether the 

RO _cunc 11:1 lope realer th n one. I n pection of Figure 1 indicatei; that 
th�re no c,adencc ( ccpt Io ibly for ubjcct 2) to suggest that the observed 
�mt.a o�ld be b tter fit by line \\ith lope greater than one. Therefore, for 

this cxpcnmcnt, the conclu ion i that the time-or der effect is due to the bias 
pr 

_and_ there is no n d to po tulatc changes in scnsiti,·ity over the two 

obscn uon mtcn I . 

◄. DLA, 'K TRIALS ASD FAI.SE INFORMATION 

We now ex mine mo modification of the forced-choice detection task 
used in the pre, iou p rirnent. One im olvcs the introduction of blank trials 
and the other the u of f: I -information feedback. By blank trials we mean 
that on oc ion tri I will occur on \\hich the signal has been omitted entirely; 
the ubjcct · not told that blank tri I are heing introduced and (because of the 

forced-choice nature of the t k) continues to make A 1 
and A 2 

responses. A
blank trial ,,,II b denoted S0 • By falu-i,,jurmatior, feedback we mean that on

some tria the aubjcct \\ill be told that a ignal occurred in a particular observation 
inten 1 when in f ct it did not. The intro<luction of these two modifications in

the detection ta permit u to make ome harp predictions that differentiate 

this model from others \\ith imilar a umption . 
I n the present perimcnt the subject \\as given the s�me instructions that

�ere used in the fi t pcriment, i.e., he w·as tol<l that a signal _wo_uld_ occur on

every trial and that the information events at the end of each trial mdicated �he 

intcn-al in \\hich the ignal oocurre<l. Actually, �owever, the presentation 

schedule imohed S S nd S type trials· on SI 
trials an E1 always occurred, 

a• • 0 ' • 1 
· E c rred and

on S1 trial an E1 al\\ a) occurred, an<l on S0 tna s sometimes 1 oc u 

somctim E' • The pr cntation chedule used in this study can be cha�actenzed

1 • h b bTt a signal was
by the parameters y 1r and x as follows: (a) wit pro 3 1 1 Y xy 

presented in the fi�t interval and, after the response
'. 

E1 occurred, (b) ;
1t

probability .\'{1-y) a signal was presented in the second interval and followe Y
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E2, and (c) with probability l -.� a blank trinl was presented and an E1 occu�rcd 

with probability 1T and an E2 event ,, ith probability 1 - TT. Thus, the probab1ht)
of presenting a signal in the first interval wn .\ y; but the probability of telhn 
the subjcctthat the signal occurred in the fir t interval was Pr(E,_,.)=xy · (1-�)ll'
Similarly, the probability of pre.coting the ignal in the second inten-al u 
x(l -y); however, the probability thnt the ubject was told that the i nal 
occurred in the second interval wa Pr(H! ") ,·(1-y) + (1 -x)(l - TT) 1 he 
model presented earlier is directly applical,lc to this experiment. :\o ncu 
assumptions are necessary; we need only apply the axioms and carry out the 
appropriate derivations. First of an, consider the sensory matrix for this experi­
ment. In terms of the assumptions 

Using the n:iatrix s• and the decision matrix D,, specified by eqn (5) ..r mance matr p• b d · d · , a pcuor-
lX 

71 
can e enve whose rows are the events s S and � d whose columns are the responses A and A Th . . i, s .._ o an 

the matrix p• 1 t· e entries m the first column of ,. are 
Pr(Hn)=Pr(A1 ,11 S1 ,,)-a+(l -a)p,, Pr(Fn)=Pr(A1 ,n IS,. n)-=(1-a)p,, 

{I Sa) 

(!Sb) Pr(A1,n I So,n) = p,,. 
�rom _eqns. (15a) and (15b) it is clear that the . (IS ) 
given m eqn. (7) for the first experiment Al 

ROC curve ts the same a onefollows that Pr(Hn) and Pr(A IS ) 
· 

1. 
�0, from eqns. (15a) and (lSc) it i. n o.n are mcarly  related as follows. 

Pr(Hn)=o+(l o)Pr(A IS ) E . 1.n o.n .
. quat1on (9) presented the axioms des .b. axioms are directly applicable t� th 

en mg possible changes in P 
(16) 

These 

(9) C ;eed
) 

on
T
ly

h
to coll_lpute the probabitft:r:r

t
�t

e 
experiment. Given eq�·.

2.n • e tree m Figure 2 d . e\;ents (s0 n & E ) given trial F h escnbes the po sible . i,n and (so• . rom t e figure we obtain events that can occur on a
Pr(so,n& E1,n)=xy(l-o)+{l-x)Pr(s & E 7T o,n 2,n)=x(l-y)(l o)+ 

. Pr(otherwise)=xc,. 
(l -x)(l- '")

Given these results an ex re . 
out the derivation for 

p _ss1on can be derived for E( employed in develo�· tt mvolves precisely the s p,,). We shall not carn­
equation: mg eqn. (10). Invoking these ar 

ame arguments that :'t"tt
E -

guments yields the folio l(Pn)-p<x>-(poo -pJG"-1.
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s0 & E2 

FicuRE 2. A tree describing poaiblc �,-cnts •i:id their related probabilitie1 for the blank­
uul aputmmt. 

Here 

and 

G= 1 -O[x,-(1 -a)+(l -x)wJ-fJ'[x(l -yXI - u)+(l -xXl - 11')], 

p _ 

.ry(J-a)+(l-x).,, 

"°- [x,-(1-a)+(l -x)'"J+[x(l -yXl -a)+(l-xXl-11)]1/>' 
(l7) 

here t/, = 0'/0. 

METHOD 

The aame experimental procedures were employed in this study u in the first one 

acq,t for the prctraining phase. Pretraining took thtte days and involved running each 

1.Jb;cct on the schedule B routine uHd in the first experiment. The sqpw inlenaity ,... 

held fixed throughou t  the expcrim01t, but during prctrairuna the aperimenter manipulated 

the noise level in an attempt to establish a signal-to-noise ratio for each subject that yieJded 

• c:orrcct response percentage of approximately 79; the rationale for eeJecting du, particular 

nlue will be given later. The manipuJatfon of the noiee waa done ecricdy by trial and 

197 
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error, but the procedure proved to be quite auccc ful for by the cnJ of prc.�ini�g a level
had been established for each subject that yielc.kd a correct re ponsc probab1lny fairly close 
to the desired value. During the remainder of  the experiment the noi c lcvd wu _fixed for
each subject at the value determined for him during pretraining. ,\l o, any 1ubJtct who 
tended to strongly favour one n.-aponsc over the other, Juring prctraining, was eliminated 
from the experiment. Only subjects "hose overall propo�i_on of A1 r� ponscs �11S bcr,..,e�n
0·4-0 and 0·60 for the second and third days of prctrammg ,,ere mdudc<l m the mam 
experiment. Four subjects from a group of 18 were eliminat1:<l on thi llllSi •. _P�ctraining,
therefore, involved two special featun.-s: (a) noi.e levels \\ere dctemuncd mdl\ldually for 
each subject, and (b) subjects were eliminated from the exp rimcnt "ho ho"w • strong 
preference for one of the response alternatives. The first n:quircmcnt gu rantcw that the 
sensitivity parameter O' was approximately the ame for all uhjccta. 'l11c second insured 
that if, was fairly close to 1 for all subjects. Thus, in a rough ser e, a hon�ogmcous group 
of subjects was formed by using this prctraining procedure; homogeneous m the sense that 
all subjects were characterized by approximately the same values of a and ./,. 

In the experiment proper, four prt:scntatiun �hedules ,,ere u cd, The probability x 
of a signal trial was 0·50 for all schedult.-s, but the schedulca differed in the valuca of y and 
,,,. as follows: 

y=0·25 
y=0·75 

'17'=0·25 
Schedule A' 
Schedule B' 

,,,.-0·75 
Schwule C' 
Schedule D' 

Test sessions of 4-00 trials were run on consecutive days. Each day a subject ran on one 
of the above presentation schedules for the entire session. In successive 4..Jsy blocks a 
subject completed one day on each of the four schedules; within each 4-day block the order 
of schedules was randomly determined. The experiment invol\'cd 20 test sessions and 
therefore each schedule was repeated on five separate days. 

RESULTS 

Table 3 presents the average proportion of A 1 responses conditional upon 
the various trial types; these averages are based on 14 subjects. Proportions 

TABLE 3. OBSERVED AND PREorCTED VALUES FOR T1111 BLANK-ThIAL Sn:ov 

Pr(H) 
Pr(F) 

Pr(A1 I S0
) 

Pr(A1) 

Schedule A' Schedule B' Scheduk C' S, liedule D' 
Obs. Pred. Obs. Pred. Obs. Pred. ObJ. Pred. 

0·641 0·672 0·755 0·734 0·820 0·820 0·903 0·886 
0·086 0·100 0·174 0·162 0·227 0·248 0·344 0·314 
0·213 0·234 0·401 0·378 0·553 0·578 0·765 0·733 
0·219 0·238 0·505 0·485 0·464 0·484 0·764 0·738 

were computed fo� each subject_ based on the last 350 trials of replications two
through five of a given presentation schedule; thus the estimates for each subject 
are ?ased on a s�quence of 4 x 350 = 1,400 trials. The averages of these individual 
subJect proport1o�s �r: the qu�ntiti:s presented in the table. Although data
we�e analysed for �ndtVIdual subJects m the first experiment, there is a theoretical 
rationale for treatm? _group data in the present experiment. The rationale is
based on the pretrammg. procedure, which was designed to insure that both a 
and cf, would be approxnnately the same for all subjects. By inspection of 
eqns. (15) and (17) we see that Pr(H), Pr(F) and Pr(A1 I S0) depend on only
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u and 4>. If" and 4, are identical for all s_ubj_c�s, then t�e model makes the umc

predictions for the group averav.e as for md1v1dual !luh1ccts. 
, . 

Figure 3 presents plots of the observed va�u<."S of Pr(//) and I,(!•) a g1H�n

in Table 3. The theory predicts that these pomts hould fall on a lmea� cune
with slope 1 and intercept u. We estimated u from these four data points by
using the method of least square - and obtained u-= 0·572. Thi estimate �\ 
used to generate the ROC curve di!lplayed in Figure 3. The four oh encd points 
(one from each schedule) fall fairly clo e to the predicted line. . . . 

Figure 4 presents a plot of Pr(A 1 
S

0
) vcr�us Pr(ll). A md1catcd m

eqn. (16) these points should be related by a linear function wit!• lope 1 - a _and
intercept u. The straight line in Figure 4 was generated u mg our prev10us 
estimate of "· Once again the linear relation seems to be rea onably \\ell 
supported. . 

To generate numerical predictions for Pr(A 1 
IS,) an estimate of t/> � 

required in addition to the estimate of "· Estimation of this parameter 1
attained using the same method employed earlier. The O'\erall probability of 
an A1 response is 

Pr(A 1) =xyPr(A 1 I S1) +.x(l -y)Pr(A 1 S2
)+(l -.x)Pr(A1 S0) 

= uxy+(l - ax)p
,,,

. (18) 

Substituting in the expression for p,,, given in eqn. (17) yields an e:xprcssion in 
<f,. For each presentation schedule we have substituted the e�timated \3)ue of 
u and the observed value of Pr(A 1) in the above equation and solved for 4,. For
example, for schedule A' the observed value of Pr(A 1) is 0·219; letting u•0·S72,

y = 0·25 and 1r = 0·25 in the above equation yields $_,,a 1·281. Similarly, for
the other schedules we obtain $n· -0·969, $,� = 1 ·229 and $0.-= 0·897. It i ·
interesting to note that $ seems to be correlated more with y than \\ith 11. 

schedules A' and C' (y = 0·25) both yield $ > 1, whereas schedules B' and D'
(y = 0·75) yield $ < 1. Recall that 4, = 8' /8 and that y is the probability of a
signal in the first interval (if there is a signal). The pre$ent e ·timat� of 4, suggest
that 0' is greater than 8 if the probability of the signal being in the �econd
interval exceeds ½, whereas the reverse relation holds othen,ise. Hence the 
change in the bias parameter Pn seems to be dominated by the inten·al with the
�igher probability of bracketing the signal. D�pite this departure from
mdependence of the parameters q, and y, very little damage is done to the accuracy
of the predictions from the model, as will be seen shortly.

To obtain an overall estimate of 4, we have taken the average of the separate 
estimates of </,, i.e., 

$=¼($A'+ In• +$c,� + $n.) 
=1·094. 

Wit� t�ese estimates of a and</,, eqns. (15) and (17) can now be used to generate
predt�1on� for Pr(H), Pr(F), Pr(A 1 I S0) and Pr(A 1). These predicted quantities
are given m Ta?le 3 '. they also are displayed in Figures 3 and 4 as cross marks
on the appropnate lme segments. There are no constraints on the relations
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amo the qu ntiti Pr(Aa I 1), Pr(.t1 1 I S 11) nnd Pr(.11 1 S1,), and therefore
tnhe independent pr diction re bein g made on the bas1� of two parameters.
An inspection of the r:rny of oh cncd nnd pn·dktt'd quantities indicates chat
� cor pondcnce t \� n thcoreti I and oh t•n ctl valut·s is quite satisfactory.

F r both chedul B' nd ' the E1 and H2 events occurred equally often,
Lt, on both achcdul ubj �ct \\ told (, in the t rial-to-trial feedback) that
the I n I\\ occurrin cqu lly often in the t\\0 oh crvation intervals. IJov,:ever,
the n I actually oo urrcd mor frequently in the first intcrval for schedule 

B than for hcdulc These experimental manipulations arc clearly
rcfl.cctcd in the dnta. On n .s·

0 
trial the prohahility of an A 1 response was

greater for schedule C' than for hedule B' (0·553 m. CHOI), whereas over all
trials the probab1l1ty of n A 1 r pon c ,,as greater for schedule B' than forschedule '(0·505 tu. 0·46'f ). Both of the e relations are predicted by the model.

ial Eff«ts 
The model predict not only hit and fol c-alarm rates but also sequential

propcrti of r pon protocol . I n term of the axioms, se_quential e�ects !nthe o n"ablc r pan e,cnt arc produced by trial-to-trial Auctuatlo�s in
p.. uch fluctuation , of oou e, can take place on any trial and are not restn�ed
to pre-asymptotic dat . For example, c\Cn at asymptote th� likelihood of makmga correct r ponsc to n S1 tirnulu depend in a ,·cry defintt� way on whether _an
Ei or an E1 occurred on the precedin g trial. The sequcnual effects of pa�ttc­ular interest deal "ith the influence of timulus and response events on tnal n
as they influence the r pon c on tri. 1 n + 1 ; pccifically

l'r(A1.n+t s, "HA, ... s,,,.). 
HOl\�cr, \\e hall not c amine the correspondence between these h

�a�icular
sequential effect nd th o rctical pn•diction:-, because there are 18 suet 1.0 epenldd • I 1·t· ns and the ana ys1s wou cnt quantiti for ch of the cxpcrnncntu eon l 1 10 

I E ) dim-ohc too much det ii Hathcr \\C consider Pr(A,,,.+1 . •1•" 
andJl.t • • • '. I . I s events on tna s n an 

. ·v�
,,. • 

I Et.J. ror these probah1lat1es t le sum� u 
J'h d of an A response r:+ 1 arc uppr ed, nd \\Conly n k for the o\'erall _hke I _

o
� The A I could becondnional on the information c,·ent of the precc<l_mf

g tnat:on even
t E on trialelicited b S · 1 1 · 'hrly the in orma 1 1 . y 1, S1, or O on tna n + ; ,mi· S t'mulus. Asymptoticncould folio,. an S1 or O 

tirnulu., und the E� an S, �
r 

J ( 'ee Atkinson, Bowerexpressions for th quantities can be readily obtaine s 
and Crothers 1965) and arc a follows: 

) 
' 1T(l -x) +xr(l - u 

� Pr(A 1,.,.sl E,..J-Pr(A 1) + ( 1 - a.t:)O(l -p,;,) 1T(l -x) +xy (19)
. , (1 1T)(l x)+x(l-y)(l-cr),�� Pr(A 1,.+J I Bi.,,) m Pr(A1)-( 1 - a.\·) 0 p.,, - (1 - 1T)(l -.t) +x(l y) 

...i. d p (A ) by eqn. (18) ... ucrc p is gi,·cn by cqn. ( 17) an r 1 



202 R. C. Atkinson and R. A. l'inchla

• 1 for /',(.l'l I E1 
.,) and Pr(A1,n+1 

Table 4 presents the observed ,a UC! 
I . d ro'•r•�1,'1di,idual subjects; the 

h t"t'cs were o ,tame 1, 
E,, ). Estimates of t ese quan 1 1 . . ntcd in the table. These 
a;:rage of these estimates are the quantltl pr 

TABLE 4. OBSERVED AND PRr.DIC'Tlil) Sr Qt I :-.,1 Al. Q ANTITI I R TIii BLANK-TulAL STUDY 

limPr(A 1,n+i I E1,11) 
,. .. co 

Scl1edule A' Sthcdule ll' 

Obs. Pred. Obs. l'rrd. 

0·255 0·267 0·52'} 0•503 

0·207 0·229 0·◄82 0 ◄66 

• dudu/� C' Schedule D' 

Obs. Pred. Obs. Pred. 
O 47S 0·503 0·784 0·748 

0--453 0·466 0·716 0·708 
lim Pr(A 1,,. , E,,,.) 

:::mates are based on the same �ct of trial a the d t,1 pre�ented in Table 3

and therefore will be regarded as asymptotic. The ah�vc cqu?t1ons can be use_d to 

generate predictions for these obscn·cd , ah: . . Hy m pcctaon of th� equat1o_ns 
we see that values are needed for o, 0 and O an order to make numencal predic­
tions. Since estimates of a and c/, have already hcen made, it is only necessary 
to estimate 0'; that is, if we fix on some value of 8' then 8 1s determined because 
0' /0 must equal the previous estimate of 4>- H)94. For present purposes, one 
method for estimating 0' is to select it value o to minimize the sum of 
squared deviations between the eight predicted and ob erved quantities displayed 
in Table 4. To carry out this minimization anal)1i lly yields unwieldy expres­
sions, and to avoid this complication we have imply calculated the sum of the 
eight squared deviations for 0' ranging from 0·01 to 1·00 in successive increments 
of 0·01. Over this range of values the sum of quarcd deviations takes on its 
minimum when 0' = 0·08. This value of 8' was u cd to generate the predictions in Table 4 • 

. I� g�neral, the correspondence between predicted and observed sequentialstat1s�1cs ,� reasonably good. In evaluating the goodn s-of-fit it should bekept m m1�d that all of the quantitie:; in the table re independent, and thusthere are eight degrees of freedom. The model requires that p (A IE ) > Pr(A1) > Pr(A1,n + 1 I E2,,.), and this relation is supported by al� fo��+�ets 
1
' f data. Also the model requires that Pr(A S E P 
0 

S E ) £ · O 1 z 1•11• i" • 1 1 ) > r(A I'·" · � 2,,. • or l = '. , . • Although not presented here a bre�d 
1,; . h data mto t�s. form md1cates that these inequalities hold• over 11 f

own o t . e 
mental cond1t1ons. a our expen-

5. D1scuss10N 
An_ alternative model for the bias roe th appeal involves trial-by-trial changes in

p 
P h 

at has considerable intuitive
information events E1 and E. Formall ,. t

d

at are. <let�rmined solely by thes y tate • the idea is that 
p = {

(1-0)p,.+8, if E,,. 

T . . >Hl (l -0')Pn , if E
1 • (20) his formulation of the bias process ( h. h . 
,. contrasted with eqn. (9) (Model 1) wh

w tc 
h

w1ll b� called Model 2) is to be , ere c angea in p " can occur only wh en 
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sensory . tate pite of the difference between these two sets 
of assumptio id nti I rrcdiction. in the first experiment for 
the asymptot //), /1,(F), /'r(,1 1) and Pr(C). Only by a 
detailed anal) f and pre-a yrnptotic data can it be shown 
that �Iodel l del 2. 

llo\\C\ct, ,kingly diflcrcnt predictions in the second 
experiment c\ t und fa! "-,1larm proportions. For example, 
applying Mod ornution tuc.ly yiclc.ls 

xy + ( I - .,·) 11 
TT)+[.,�l-y)+(l -x)(l -11)]4' · 

From thi cqu t1 n, '- th t p i idcmi I for both . chedulcs B' and C' of 
the second e pcnm nt; here , u ing ;\lodcl 1, p is greater for schedule C' 
than for chcdule U'. ·1 his rel tion, of course, i reflected in Pr(lf), and Pr(F) 
and Pr(A

1 I 0). ror 1odcl 2 
J>r11'(/l)•/>r' (II) 
Pr '(F) P (F) 

Pr8
( A 1 S0) P (A 1 I So) 

where Pr '(//) dcnot th 
In contrast, for 1odel 1 

ymptoll� probability of a hit on schedule B', etc. 

P,11'(/I) < Pr-(11)
Pr ··(F) < Pr

-..(F) 
Pr '( A 1 S0) < Pr.(A 1 I So)·

The inequalities predict d by .i\loc.lcl 1 for _chedules B' and C' are bor�e out by

the group a,cr cs pr cntcd in Table 3; it also is the case that the relations hold

individually for all 14 ubj . • h 
To further illu trate the differential predictions of Models 1 and 2 10 t e

• · b. · · F'gure 5 for the case where
second expcnmcnt, v.e ha,c plotted 1so- 1as cunes in 1 

llodel Jl 
I.Udell 

p,,n 

Fn,URE 5. ho-bias curves for Models 1 and 2. 
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R. C. Atkin 1. f r all four 204 . a straight me o , . n·c for Model 2 is schedules B' and 

.J. 1 Note that the iso-bl1asl 
cuth"t the isa-hi curves <lforl s A' and D' arc the� "" . • <l I an 1. n o .. f s c he u c H,presentation sch.e u

::-.f' I I 1 the i o-hin cur,es o� of :\1odel 1, schedult..-s 
are idcntica\1 l�°:i 2· o�,:,,cvcr, under the ' ump uons 

same as for o rtf:rcnt non-line. r un . I finc<l between correspondm_ 
and C' �enerat� \' 1 ca di.stance function n �c < cl l ., The maximum _of th1 

Usmg \I� c b.' curves for chcdul n an� I 
.. ect to u and setting the

Po·1nts on the iso- ,as k" "ts dcr1, u, c \\ it l resp · d by t11 ·mg 1 • 
• ld function can be obta1nc . t th c o1,cr tions y1c s 

I o Carrving nu result equa to zer . � < a-2- ,12:::-0·S J. . d'fference between. f :Model I the maximum I 
' • beTherefore, under the assumpt'.onsl? funcuo� of schedules B' and C ,,111 _ 

corresponding po_ints on t!ie is_��;;�,, On of the principal reasons for run

d

nmbcg 
observed when u is approximate� - . . \\hcthcr such a difference ·woul · 

t was to uctcrsninc • • ff t if itthe second expenmen • . . the likelihood of discovermg an e cc 
observed. Therefore, to max1�mzcl t noi e level at a value corresponding to a
existed, we wanted to set the_ s�gna_ - ol • \ I . S ·md S trials, and they v.crc
u of 0·59. Recall that �ret�atntng lm,o ,c,� (

o;)) .. 11
• 
(l _ ;)A. Consequently tod ·'th equal hkehhood; 1ence ' - 0 � 

. • • presente \\I • 1. 0·59 required nd1·ustin' the noi!'.e level durmg pretramm g fix u at approximate } • 0 79 ~ 0 59 (0·41 )l t� yield a correct-response proh:,bility of approx'.mately . = . '. ofThe prctraining procedu�e \\as fairly __ ucccssful, inasmuch as the estimate 
a during the actual experiment was O·:i ,2. . . In both of the experiments reported m tlus paper, response ume \\Crc
obtained on each trial. The n.-spon c-timc d. ta are reasonably orderly and a�c
clearly affected by the presentation chedule. }"or example, in the fin,t experi­
ment the time for an incorrect respon c \\ about SO msec longer than for a
correct respon!'.e. Also, the rcspon e time for an incorrect response appeared
to be independent of the stimulus presentation chcdule, whereas the time for a correct response decreased some,, hat a y increased. An attractive feature of
the present model is that it can be ca ily gcncrnlizl·d to treat response-time d ta The generalization is simply to a ume that re ponse time on a given trial isdetermined ?Y the sensory st�te acti, ated on the trial. More specifically, \\C a�su,:ne t�at 1f sensory s�atc s, (z ""'0, 1, �� occurs ?n trial n, then the respon. e-timc d1st_nbut 1ox:i for that �nal has prohab1lity den tty /1(t) with mean t,. On thebasis of this assumpt ion . a number of prediction cun be derived concern in theevents on the current tnal (and on preceding trials) as the · fl · 1� . I • . Y m ucncc r ponsc time. or examp e, m the first experiment the mean asym t t' d. · 1 · 1 P o 1c respon. e umcscon 1t1ona respective y on a correct and incorrect res ponse are as follow

E(T\C)=u[yt1 + (l �)ltJ+(l-o)[yp ·(1 y)(l Poo)]to
a+ a)[yp +(1- y)(l -p )] E(T l C)=t0• 

00 

If l1 < t, < to then these conditional respon c-time me a5ures are appropri tel)
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• currently maly ing an experiment specificallytime umption outlined aho\'e. The analysesrs that if p.1r, meter c t11n;1te. arc made froml on corre l nd incorrect responses, then 

r n he m11dc for di tributions conditional on
r c current tri.1I (,ind the immediately preceding
tr , time need more e'\ploration but appearsprom in . 

11ie c pcrimcnt nd model analy con idcrcd in thi. paper have beenconfined to mm tnc outcome structur im:oh ing no explicit p.1yotfs. If we \\ere to gcncr laze the model to ituntions in\'olving m.inipulation of monetaryp.iyoff then 1t rnuld he n c ry to off er n more general theory of the decision proc . Qb\lOU ly there re outcome tructurcs that will displace the subjectofhhc linear no cur'\c cified by cqn. (7). l'or example, consider the payoffmatrix
A1 A1 

S1 [
-1 +10

]
s. + 10 -1 

In this case the ubj ct i he , ily rc\\arded for incorrect detection responses and 
penalized for corr on . Undoubtedly, o,cr time the subject would generate
a point (Pr(F), l'r(ll)] th t {c]I in the lo\\er right-hand sector of the ROC s�a�e ;
i.e., J�(f1 > Pr(ll). uch effect cannot be predicted �ercly by generahzing
the umrtion o,ernin p,.. No matter how p,. is perrrutte� to_vary, the m od el
ill requir that performance points fall on a linear curve with intercept_ a. Of

course, ac,cral modafic tion of the theory cem able to account for expenmental
manipulations th t cncrate performance point off the ROC c�r�·e. One approach 
is to dc,clop a more cl bor te conceptualization of the dcc1s1on process . For 
example, one can redefine the decision matrix as

A 1 A 1

Dn- :: [ �!0 : =!!u] 
S1 l-d!2) d!t' . 

. h F . I . f th outcome structure m1g tor this process experimental mampu auons O e . h t lated affect not only p,. but al o the values of d!'1• Thus, _<lepen<ltng on t e_ �:lry anyrcbtion of dhl to the pa'-·off matrix it would be possible to dgenerat
b
e
t
v�n

r
s a mod el • J 

• • • • t duce one o a1 ROC_ cun c. Whc� thi type of m od1ficat1on is md r�or d iscrimination learningthat 1 ,cry clo e m tructurc to tho e propose d R 1964) Another {Atk�nson and � t , 1963, p. 2�8; Bush, �uc� �: to d�::lop a rr:ore generalpossible modification of the dctecuon mode� \\OU�-
r one might assume that

formulation of the ensory process. Purs':1ing t is �ne
fi.xed limits as a functionthe ubjcct's sen itivity level could va� witlu

B
n c�:;�hese alternatives represent of the outcome tructurc and other variables. 0 
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cl thi type. They raise
R. C .. \tkinson nd R. • Kan hl 

f I 
. 

1 Jcvclopmcnt for mod 
o d I bv manipulationpotential lines o t 1eorcuca . 

perform n m u l .J an important question: can chun •c. 
Ill 

the theory of the bias
b lu111cd b,.• cl bo un 

of the outcome structure c exp . .1 

more t.-omplex sensory
process, or do they also nee . itatc po tulatm '

mechanism? 

Rt 11 Rt ·c 
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