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e smlyed i s of ] e e embleYing » forced-choice procedure

rm rporates two distinct processes: a sensory
process and a decision process. The sensory process specifies the relation between
exttfrpal signal events and hypothesized sensory states of the subject. The
decision process specifies the relation between the sensory states and the obs;rvablc
responses of the subject. The sensory process is assumed to be fixed throughout an
experiment, whereas the decision process is viewed as varying from trial to trial as
a fl..ln_ctlon of the particular sequence of preceding events. The changes in the
decision process are assumed to be governed by a simple stochastic learning model.
There are several ways of formulating the learning model and the experiments
repo_rt.ed here were designed to select among these alternative approaches. The
empirical results favour a linear-operator process with trial-to-trial changes in
response probabilities that are a function not only of the signal and information
events, but also of the particular sequence of sensory states activated.

1. IxTRODUCTION

This paper examines a model for choice behaviour in a two-alternative
forced-choice detection task. ‘I’he model is restricted to experimental situations
where the subject is given feedback on every trial regarding the correctness of
his response, and to situations with a simple outcome structure. Thus the model
has a limited range of applicability, but for appropriately contrived experiments
it appears to provide an accurate account of the gross aspects of the data and
certain sequential effects. The model represents a special case of a more general
theory proposed by Luce (1963); it is also very similar in most details to a model
of forced-choice behaviour proposed by Atkinson (1963). The relations of the
model developed in this paper to these other theories of detection behaviour are
examined in some detail by Atkinson, Bower and Crothers (1965, Chapter 5);
they also discuss the relation of the model to various theories that have been
proposed for probability learning expcriments. =

The model postulates that the observable relations between stimulus events
and responses are a product of two processes: a scnsory process and a d;cns:on
process. The sensory process specifies the relation b‘etween the exte'rr-lal stimulus
event and hypothetical sensory states of the subject. The decision process
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184 R. C. Atkinson and R. A. Kinchla

specifies the subject’s response in terms of his current sensory state and 'ir}forma-
tion that he has acquired during the course of a given experiment. I'he t.wo
processes interact as follows: the stimulus is fed into the sensory process which
converts the pattern of external energy changes into sensory.mformapon (sensory
events); the decision process then operates on the sensory lnformatlon' to deter-
mine a response. Some theories of detection have assumed a continuum of
sensory states (Green, 1960; Swets, 1961; Tanner and Swets, 1954), whereas
others have argued for a finite representation (Atkinson, Carterette and Kinchla,
1962; Fechner, 1860; Luce, 1963 ; Norman, 1964). Further, some have proposed
that the sensory process is static over trials, whereas others have assumed that
it varies within certain fixed limits from trial to trial as a function of preceding
cvents (Atkinson, 1963). One point of agreement among all theories is that the
decision process is dynamic, and undergoes change when the experimenter
manipulates the presentation schedule or outcome structure. However, for a
given experimental schedule some theories treat the decision process as fixed
(independent over trials), whereas others represent it as changing from trial to
trial as a function of the particular sequence of preceding events. This latter
way of representing the decision process is an important feature of the model
considered in this paper. The subject is viewed as adopting a pattern of decision
making in each experimental situation by means of a simple stochastic learning
mechanism. The learning mechanism that will be examined is similar to those
proposed by Bush and Mosteller (1955).

As noted above, the type of psychophysical situation that we shall consider
is a two-alternative forced-choice detection experiment. On each trial two
temporal intervals are defined and the subject is instructed to report which
interval contains a signal. It is a forced-choice task in that on each trial the
subject must select one of the two intervals as containing a signal even if he is
uncertain as to what occurred. The presentation of a signal plus noise in the
first interval and noise alone in the second interval on trial » will be denoted as
S"l,,, and the Pre§cntation of noise in the first observation interval followed by
signal plus noise in the second observation interval as S, ,. Further, the subject’s
responses will .be denoted 4, » and 4, 5 to indicate which interval he reported
contained the signal on trial n. Finally, E, » and E, , will denote the occurrence
of an event at the end of trial n informing the subject that stimulus S, or S,,
respectively, was presented. T'hus

St,n =the presentation of stimulus S¢ on trial n,
Aj n=the occurrence of response 4, on trial n,

Ek,n=information event at the end of trial n indicating that stimulus
Sk was presented.

Using this no?ation each trial can be described by the ordered triple ¢Sy, Ay, Ex)

.In experiments of the type described above the following variables can be
mampulatedf (a) physical parameters of the signal and noise; (4) presentation
schedule of signal events; (c) information feedback; and (d) the éutcome structure
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which specifies the payoffs associated with correct and incorrect responses. |
this paper we shall examine how these variables influence det
but the experiments reported here deal only with manipulations involving
presentation schedules and information feedback. ‘The presentation of signal
events will be specified by a probabilistic schedule: namcly, events S, and S,
will form a binomial sequence with parameter y.  Further, the experiments
employ a simple outcome structure.  The subject is instructed to make a correct
response as often as possible, and each trial terminates with an information event
which tells him whether he was correct or not. There are no monctary payoffs
or penalties for correct and incorrect responscs as is frequently the case in
detection experiments.

The major dependent variable is the probability of an Aj response on trial

n, given that stimulus S; occurred. ‘The four outcomes can be represented by
the matrix

n
ection behaviour,

Ain Agn
P. = Sin[ Pr(A,n | Si.n) Pr(Agn| Sin) ) (1)
5 Spm [ Pr(A,n | Sgm) Pr(4s,n | Ssn)

‘This matrix will be called the performance matrix. In the literature the occurrence
of an A, fesponse to an S, stimulus is called a Mit, and the occurrence of A,
response to an S, stimulus is called a false alarm. We shall use this terminology,

denoting them gg /g and Fa, i.c.,
Pr(Hp)=Pr(A;n | Sin)
l’f( l“.)-Pr(A,_. | S',n).
ixi | i formance matrix.
Fixing Pr(H,) and Pr(Fu), then, completely specifics the per :

”‘}IZE q:l)lntitics of 'ilntcrcst can be defined in terms of the hits and fal'St;
alarms.  Frequently we want to know the probability of an A, response on tria
n independent of the stimulus event; namcly, ;

l’r(A,_,.)-l’r(l—l,.)l’r(S,’,.)+Pr(F,.)Pr(S,,,,). . (.)

Also of interest is the probability of a correct response on trial 7 (which is
denoted Cy): .
PT(C.)-PV(II-)PY(SI'")-I-[l "P’(F]])]PY(SZ.")- ( )

2. ASSUMPTIONS AND RULES OF IDENTIFICATION

Sensory and Decision Processes

o
The model assumes that one and onl e bo denoted a8y, Sy
trial of the experiment. The sensory states Wlt necessarily results whenever a
. ory state X 3 by™a
We do not suppose that the same sens is determined by
particular stinrulus is presented, but rather that the state 1s

i eriment can be
random process. The scnsory process on trial n of an €xp
represented by the sensory matrix

y one sensory state can occur on each
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So  S1 Sy ... S

n)
s Si[e .l
w n

" S, La aR ay ... axl e
ili iciti trial n given
where a® denotes the probability of eliciting sensory state s{) on emegd 2
stimulus'jsg on that trial. Similarly, the decision process can e repres
the matrix

4, 4,
so[ d (o’i) ‘18‘2) -1
S d (l'i) d‘x"z)
S2 d &'{) d &)
Dn = . - .

slLaw dgl,
. iy — . . <o
where d{{’ is the probability of eliciting response Ay on trial »n given sensory

state s¢ on that trial. Then the performance matrix apeciﬁeq .by eqn..(l.) is
obtained by taking the product of the sensory matrix and the decision matrix;i.e.,

Pn - SnDn-

The model that we shall examine postulates three sensory states for the
two-alternative forced-choice task:

so=no detection
s; =detection in observation interval 1
so=detection in observation interval 2.

Further, the activation process and the decision process are defined by the
following matrices:

So S, Sy
S;[1—-0 o O
s=slize 0 o Q
A, A,
So[Pn 1—Pn
Dy=ys,| 1 0 (5)
soLO 1

There are several points to note about these matrices. First, the entries in S,
are constants independent of the trial number; thus the sensory process is
assumed to be fixed over all trials of the experiment. In contrast, the decision
process may vary as a function of the trial number, and this dependence is
indicated by affixing the trial index n to p. Also, s, can occur only if S, is
presented, and s; can occur only if Sy is presented. Thus these sensory states
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have an unambiguou i :
s relation t i ;
inferred with pribabilitv 1 “hc: tt}}:c 5t'mU|U5,lﬂmcc the signal event can be
g Y ' €y occur. In contrast, sensory state s,
. . is
arlnblguo'u‘sly rclated to the stirnulus, for it can occur following cither sigonal
c;cr}u}t. I'he parameter o characterizes this stimulus ambiguity in the output
oI the sensory system. Both loss of stimulus information due to cxternal noise
and loss’ due to limitations on the resolving power of the sensory system are
summarized by 0. I'hus o may be interpreted as a measure both of th hysical
stimulus and of the subject’s itivity : i | PR
i ) sensitivity ; o will be referred to as the sensitivity
; thThebd‘eCI?xop matrin.t Dy reflects the relative ambiguity of the sensory states.
' € subject's instructions are to make an A response given an S; stimulus,
then the correct response is completely determined when an $) Or s4 sensory state
occurs. Iowever, the subject faces a dilemma if he must make a response on
the basis of s,; f:nthcr stimulus could have evoked so, so the subject needs some
strategy by which he can resolve the ambiguity and select a response. ‘T'he
quantity pp is a measure of the subject’s tendency to resolve the ambiguity by
[r)r}akmg an A, response rather than an A4,; p, will be referred to as the response
1as on trial n.
For the experimental variables discussed earlier it will be assumed that the
resentation schedule, information feedback and the outcome structure influence
¥
Pn, but do not affect the sensitivity parameter o. Also, it will be assumed that
the sensitivity parameter, for a given subject, is determined solely by the physical
yp B ) Y DyathespaLy
aspects of the cxperimental situation. It is, of course, nececssary to show
experimentally that these interpretations are correct, and to examine how the
rameters o and pu #re related to the physical characteristics of a given
pa RBY 8
cxperimental situation.

In order to see how the sensitivity parameter and the bias parameter interact,
consider the relation between hits and false alarms as one or the other of these
parameters is manipulated. ‘T'aking the product of the matrices in eqns. (4) and
(5) yields the performance matrix P, for this model. ‘T'he entries in the first
olumn of Py are as follows:

Pr(Ha)=(1-o)pn+o (6a)
Pr(Fa) =(1—=c)pa. (6b)

If o is held constant and pn is manipulated, an exchange relation is csta.blished
between Pr(Hy) and Pr(Fy). The equation of this relation can be obtained by

climinating p, from eqn. (6) yiclding
()

Pr(Hpa)= o+ Pr(Fy).
Thus. if o is held constant (fixed signal and noise levels) and py is forced to vary
, in the presentation schedule, outcome structure, ctc.), the
d false alarms should be a linear function with slo'p_c 1.
mental conditions

Pr(H») and Pr(Fp) under experi
% h'::)ld fixed ar:'d other variables arc allowed to

(manipulations
relation between hits an
Plots of the relation between
where the signal-to-noisc ratio 18
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\ﬂly are ()ftell T err d to recce \cl-()‘)cldt"l -c‘lalﬂc!cllg t1C Clll\rcs, or more
cf (] as ccl g

imply as ROC curves. =y s il
Slmpl'f pn is held constant and the sensitivity parameter changed, tl

well-defined relation between hits and falsc alarms. Eliminating o from eqn. (6)

yields 1
Pr(Hy)=1—Pr(Fn) [ W" . ] . ®)

Plots of the relation between Pr(H,) and Pr(Fa) when pp 18 constant and o 18
varied are called iso-bias curves.

Learning Process

As indicated earlier, an important featurc of the present analysis is to
represent changes in the bias probability in terms of a learning process of the
type proposed by Bush and Mosteller (1955). We assumc that the bias on trial
n+1is a linear function of its valuc on trial n. Specifically, if s, occurs and is
followed by E, (i.e., the experimenter informs the subject that the signal was in
the first interval) then pn will increase. 1f s, occurs and is followed by informa-
tion event E,, then p, will decrease. FFor all other contingencics no change will
occur in p,. Thesc statements can be summarized as follows:

(l—o)f’n"'g, lf So.m & El.ﬁ
Prir= < (1=6)pn, if so.n & Eqn 9
Pn, otherwisc,

I v D . .
where0< 6, & <1. Justification for this equation is postponed until later.

. \'\‘e now want to derive an expression for the cxpected value of p, as a
t;xlntctxor) o{' the [{orelsc]ntatlon schedule and the sensitivity parameter.  Recall
at y is the probability of an S, signal ev i .
ty y signal event and 1 ~a is the probabili
activating sensory state s, given cither S, or S,. Hence L g

Pr(so.n & E} 3) =9(1 —0)
Pr(so.n & Ey ) =(1-y)(1 —0)
, Pr(otherwise) =o.
o compute the expected value of the bi ili
o1 : ' ‘ -
weight each of the possible outcomes li;tefl ri‘r:():::.b‘ln} e o R

occurrence given above. ‘That is, t} {De 0. (9) by its probability of
value py, on trial n is 15, the expected value on trial 5 41 given a ffxed

E(pnsr)=9(1 - o)[(1-6)p, + 01+(1- Y)(1 = o)1 —
It can be shown th:t[;)—i(ri :la) {?7"'6’(1 = 7)}1Pn + 091 — o).
value (Atki P e above equation can b
ﬁrst?osd;:(g"sﬁ?n’ Bower and Crothers, 1965). an be re
ilerence equation in E(p,) which has the s.Olt:nt.ly we have a linear
ution

E(Pn) oy ‘(Pm —p)Gr1

0)pn + opn

Consequ Placed by its expected
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where
Y
Pa™ ————,
r+(l-v)é
G=1-(1-0)[0y+6(1 —y)
and ¢=0"/8. Note that p, which is defined as lim E(p,), does not depend on

(10)

LE 2]

the absolute values of 8 and " but only on their ratio.
Combining the results in eqns. (6) and (10) yields
Pr(Hn) =0+ (1 =0){p o — (P~ P)G*] (11 a)
Pr(Fp) =(1=0)[pe=(pu—P)G"]- (11 b)

From these equations it is clear that hits and falsc alarms will depend on p, at
the start of an cxperimental session; however, over trials the subject’s perfor-
mance changes at a rate controlled by the quantity G, and approaches an
asymptote dectermined by o and p_. ‘I'he change in performance predicted by
eqn. (11) i8 & well-known experimental phenomenon.  Generally, however, most
rescarch workers have tended to ignore the changes that occur at the beginning
of an experimental session, and instcad have concentrated on an analysis of data
after performance has settled down to a stable level. For the experiments
analysed in this paper we shall adopt this policy; to do so makes matters simpler
because fewer parameters need to be estimated. Since asymptotic performance
will be stressed in subsequent discussions, the following notation will be useful:

lim Pr(Hga)=Pr(H)

n-e®

lim Pr(Fy) = Pr(F).
That is, asymptotic expressions will be indicated by simply deleting the trial
Subscript. Making the appropriate substitutions in eqn. (11) yields

E) =4 27 (122)
Pr(H)=o+ AT
(1-0)y (12 b)

BB = Sii=n”

Similarly, for the asymptotic proportion of correct responses (see eqn. 3))

(1-0)y(2y—1). (13)
Pr(C)=a+(1 =y o)+ T
and for the asymptotic proportion of A, responscs (see eqn. (2)),
Pr(A,) = + 7(1_0)__. (14)
A=t ST

3. EXPERIMENTAL MANIPULATION OF THE PRESENTATION Scn-u;:nuua .

ects in a forced-choice acoustic

We now examine data collected from eight subj 3 held
detection experiment. In this study the signal and noise levels were
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. ‘) su l = g fOI m n
y

cC Cr llllcht and [‘IC L l’ cCl Was ﬂl ways iven m allo

. Sp . ,

at tlle e"d Oi CaCh tr lal l(—galdlng th rc onse Ille 0“‘

. correctness of his T ;
ioulation involved Lthcc use of threc dflt}';:r::; pvr:lsue;t:atnon
experimema'l ‘mampga;:)illity, y, of an S, event took on the following
et Schedule A: y = 0-25
Schedule B: y=0-50
Schedule C: y=0-75.

constant throughout th

METHOD

> a subject
5 i f 350 trials each were run on consccutive days: ; 1:32h3i1::'y blocl::s .
jlest s o schedules for the cntire session. In suc;,«.ssbll  the oz det s
ran on one of e thf'-‘i Z;; of the three schedules; within each 3-day .oc ot
Eubices {ando?‘:.,:?:c?]n L:‘l‘he experiment involved 15 cxpcnmcntal sessions ar
ndom cte . e L
::::h SCh{'dul‘-' was run on five s'.,:pan'itt d‘:’:;.nwd binsurally in the subject’s headphories
Lendinies Ga"lf)?:a:n:l“)tll?: :i::u{’ :\'-:.u a 1,000 c.p.s. sinusoidal toug the l;(,)"(: ::::
through o o 100 SCSS‘l including equal fall and rise times of 20 msec. I'he subject :
presented for IOQ msec, 1 On cach trial three lights flashed on briefly in succcssu_)n.
Bt e boare. ot ber light. Each light was on for 100 msec with
a red light, an amber light, and anothcr' nm er ‘mmd. '.l..hc I e ST - g
B e I o A (ml-ptrr\‘-ui;)n intervals. ‘The onset of the signal
e W(;\ilc th1e ambe:yl l!f?:: t‘::;ﬁ::;jc::;l? 0(1)1;3:;{ t'hc amber lights. After the second amber
Bt subiecr, icate his response by pressing a push-button
light went off the subject had 2'5 sec to indicate his . 4 B Lo
appropriate amber light. At the conclusion o nc' resp e
mﬁftlilg‘;:]tdggslt\lgz o}:r;'orp700 msec above the correct response button. I'here was a 1-5 sec
intertrial period, thus each trial lasted for 6 sec.

RESULTS

T'able 1 presents the proportion of 1, responses on both S; and S, trial®
over the last 250 trials of replications two through five of each presentation
schedule; thus cach estimate is based on 250 x4 =1,000 trials. The firft
replication of each presentation schedule has been deleted, because we view the
subject as adapting to the detection task on carly days of the experiment and
want to treat his data only after he clearly understands the experimental routine
and is well practised. Also, the first 100 trials of cach of the subsequent experi-
mental sessions were deleted because, as noted carlier, our analyses are going to
be restricted to asymptotic performance.

In this experiment the signal and noisc levels were constant over all sessions
and only the presentation schedule varied. Therefore, o should be fixed through-
out the experiment, but p_ should vary with changes in y. It has already been
shown that hits and false alarms should fall on the straight line Pr(f1) = o + Pr(F).
We now wish to fit this equation to the three data points corresponding to
presentation schedules A, B and C. Figure 1 presents plots of Pr(/f) and Pr(F)
for individual subjects. In order to fit the above equation to the three points for
each subject we use the method of least squares, i.e., o ig selected so that it
minimizes the sum of squared deviations between observed values and thog.



TaBLE 1.

Subjeci

Average

Prep;cien AN OpsEovesn Frorozmions o Prii), PriF), Pr(C) ano Pr(A.,).

Pr{ff)
0-601
(0-622)
0-543
(0-529)
0-397
{0-626)
0:529
(0-517)
0-520
(0-546)
0-542
(0:347)
0-618
(04627)
0570
(0-552)
0-565
(0-571)

Schedule A

Pr{r)
0-154
(0-163)
0125
(0-130)
0-106
(0-107)
0-127
(0-122)
0-120
(0-142)
0-141
(0-139)
0125
(0136)
0-125
{0-108)
0128

(0:132)

Pr(C)
0-785
(0-783)
0:792
(0-780)
0-820
(0-826)
0-787
(6-788)
0-750
(0-780)
0-780
(0-783)
0-810
(6-805)
0-79%
(0:807)
0:795
(0-754)

Pr(dy)
6-266
(6-278)
G-229
(0:23%)
G229
(0-237)
6-227
(0-221)
0-226
(6-243;
0-241
(G-241)
0-249
(6259)
6236
(0-219)
0237
{0-241)

parentheses)

Pr(idy
6744
(©-713)
0-680
(C-659)
0716
(G767
0-66%
(6-649)
0-658
(5-650)
0-68%
(0-680)
0-744
(0-742)
070+
(0-687)
0700
{0685)

Schedule B

Pr(F;
0:-297
(D260}
0-262
(G-249)
0-225
(©210)
6267
(0-242)
0-258
(6-240)
0-287
(6279
0-252
[©251)
0-258
(6-244)
0263
{0+247)

0724
(0-727)
0709
(G-702)
0-74¢
(6-748)
0-701
(0-703)
0-700
(6-705)
0-701
(G-701y
0746
(0-746)
0-723
(8:722)
8719

©719)

Pr(A,)
0521
(©-487)
0471
(©451)
0470
(6-439)
0486
(©-436)
0458
(0+445)
0-488
(2-479)
0-498
(0-496)
0481
(0-465)
0482
(0-466)

{The observed proportions are in

Pr(H)
0§77
(©-90)
832
(0-854)
0849
(0-842)
0-825
©:357)
0816
(0-799)
0-841
(0:347)
0-872
(0-364)
0847
(-587)
0845
(0:855)

Schedule C
PriF)y PriC)
0430 D300
(0-462) (0-802)
G414 0771
(0-397) (0-:791)
U358 0797
(0-384) (0-785)
0424 0763
(D-454y  (0-779)
0416 0758
(0-413) (0-745)
0-440 0-771
(0-451) (0:772)
0376  0-809
(0-269) (0-806)
0-401 0-785
(0-438) (D-B0A)
0408 0-782
(0-421) (0-788)

Priy)
0765
(0-783)
0727
(0-740)
0726
(0-728)
0725
(0-756)
0716
(0-703)
0-741
(0-748)
0749
(0-740)
0735
(0:775)
G735
(0-746)

Stuauiadxy uosaracy 27104 ~parao,y sof popoyy Sumsvey g

161
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1.0
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0 2 4 .6 .8 0 2 4 & ] 1.0
PrF

Ficure 1. Observed and predicted values for Pr(¥) and Pr(F).

predicted by the above equation. Applying the least squares method yields the
estimates of o that are given in Figure 1; these estimates were used to generate
the ROC curves displayed in the figure. As indicated by the figures there is
good agreement between the observed data points and the predicted ROC
curves. Recall that the signal and noise levels were the same for all subjects
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lgndlcon:-u.-quently variations in o represent inter-subject differences in,sensitivity
evel.

Next we evaluate the Proposed bias process with regard to the data presented
in Table 1. Note that if y and o are fixed in eqn. (12) and ¢ is varied from 0 to
, then the point [Pr(F), Pr(H)] moves along the ROC curve and approaches
the lower-left point (0, o) as ¢ -+, and the upper-right point (1 - o, 1) as
¢ 0. Stated differently, no matter where the point may fall on the ROC curve
(for fixed values of y and @) there exists a corresponding value of ¢. Hence, if
the three observed points (Pr(F), Pr(H)] fall on a straight line with slope 1,
then perfect fits of the data can be obtained by estimating separate values of
¢ for each presentation schedule.

However, obtaining an estimate of ¢ for each presentation schedule would
violate the basic rationale for the model. In formulating eqn. (9) it was assumed
that 6 and @ characterize trial-to-trial adjustments to stimulus and information
events, and did not depend on the overall presentation schedule. The values of
0 and €' may vary from subject to subject reflecting individual differences;
however, for a given subject 6 and €’ are assumed to be fixed and invariant with
regard to the presentation schedule and the signal intensity. Earlier it was
#sumed that ¢ was independent of the presentation schedule, and the same
constraint is placed on ¢. Thus for each subject we want a single estimate of ¢
which then can be used to make predictions for all three presentation schedules.

The observed proportion of A, responscs given in Table 1 was used to
estimate @, Equation (14) gives the theoretical expression for Pr(A,); solving
for ¢ yiclds

M1 —o) B
e A (e R e
For each presentation schedule we have substituted the e_stimatcc‘i value of o afld
the observed value of Pr(A4,) in the above equation to obtain an estimate of“;ﬁ.l I::x"
cxample, for Subject 1, 0=0-447, Pr(d,)=0-278, and 7=°'2°S.°".f°}‘e $“ iy
hence substituting in the above equation yields $A=O'777'A my arA)' B call
#. can be computed using the appropriatc values of y and Pr(4;). An overa

‘TaBLE 2. ESTIMATES OF ¢

A

‘ ) ) b1 $c

Sl‘?“‘ 0"8#60 0?7“77 1-:099 0-705
2 1-219 1-162 1:400 1-096
3 1:265 1-155 1-390 1 22;
4 1-238 1-324 1-:446 09 >
5 1-329 1-065 1-449 1 3178
6 1-083 1-085 1-147 1 i
7 1-016 0914 1-:028 l:;75
5 1-148 1-384 1-284 0

Average 1-145 1-108 1-280 1:046 i
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estimate of ¢ was obtained for each subject by taking the average of the three

$ = §($A +$n+$()- ‘I'he various estimates of $ are presented

estimates; namely one, indicating

i _ Note that for all but one subject $ is greater than :
:r}l\a"t[‘zl’ﬂ:ef.l ’II‘\he interpretation of this result is that the E,; event ha; aEsllg‘tl:rl‘)t'
greater effect on increasing thle pro;)abil;;y of an A4 response than the £, ¢
- ncreasing the probability of an 4 response.

- o{‘Jslin;r the egstimafcs of o aynd $, predictions can be comp‘uted for Pr(H),
Pr(F), Pr(C) and Pr(A4,) from eqns. (12) to (14). .l}'u:sc predicted .valu'es and
the corresponding observed quantities are presented in I'able 1. Alsq in Figure 1
the predicted and observed values of Pr(H) and Pr(F) are plotted in tl}e ROC
space. In this figure the predicted point for each presentation schedule is at the
intersection of the predicted iso-bias curve and the ROC curve. Overall, the
correspondence between predicted and observed values is quite good. Only
Subject 8 appears to display systematic discrepancies. To a degree, this
subject’s performance deviated from the theoretical values in the direction of
optimizing the probability of a correct response; that is, for fixed o, to maximize
the probability of a correct response the subject should sct the bias parameter at
unity when y > §, and at zero when y < % (sce eqn. (13)). If the subject adopted
this strategy, then the ROC curve would reduce to three points; one at (0, o) for
y <}, another at (1—o, 0) for y>1}, and a third point for the presentation
schedule where y=4. Undoubtedly if monetary payoffs for correct responses
a.nd Penalties for incorrect responses wcre introduced into the experimental
situation, more subjects would deviate from the theoretical values in the direction
of optimization. We shall return to a discussion of this point later.

Time-order Effect

In the forced-choice detection task the term time-order effect is used to
refer to the fact that subjects generally are more accurate in detecting signals
embedded in the second observation interval than in the first. For exa;gn li :
schedule. B (which has S, and S; events occurring equally often), ever 5ub"$
had a higher probability of being correct when the signal was ’in th)e’ secimd

:J\(telrvalt’fhan ;n the. ﬁr§t interval. In terms of the present analysis there are two
fasoznat;onil or this time-order effect. One is that the bias parameter tends to
r the 4, response. llence when sensory state s, is activated, the subject

’ C

x;‘li;l}(‘t::sr ;l;zb;‘lb,n ix;es;())(;r;)sg more frequen'fly, which insures that he will have a
higher pre time-o}:‘der ef;nft correct on S, than on :S', trials. Another possibility
il -tthe B ordeys e : occlurs because the subject’s sensitivity level changes
sensitivity parameters N er‘\;a . the- next; specifically, that there are two
ST e effegtl an bcr2 associated with the two intervals and o,> ¢
Ji 1% s sorder <f _re(;ar:) e accounted for by postulating a bias proceszs th;;
more sensitive to stimfxli il or_by D & Meteary micchiap BaR L
means for selecting between them; for?:na:e;yn?h: n:x V(;'Ollﬂd Pl aligaton:
odel makes quite different
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predictions depending on which explanation is offcred. If the explanation is in
terms of the bias function (as was the case in our analysis of these data) then the
ROC curve has slope | and the time-order cffect is simply due to the fact that

¢h> 1. If, however, the effect is explained in terms of different sensitivity levels,
then

Pr(H)=o,+ (1 -0,)p

Pr(F) =(1 - a)p.
Under these conditions the ROC curve is

Pr(Hy= =23 Pr(F) + o,
l-o0,4

If 04> 0, the slope of the ROC curve is greater than one. Thus to decide
whether the time-order effect is due to the bias process alone, or whether it also
may be due to differential sensitivity levels, we must determine whether the
ROC curve has slope Ereater than one. Inspection of I'igure 1 indicates that
there 18 no evidence (except possibly for Subject 2) to suggest that the observed
points Would be better fit by a line with slope greater than one. ‘Therefore, for
this experiment, the conclusion is that the time-order effect is due to the bias
process, and there is no need to postulate changes in sensitivity over the two
observation intervals.

4. BLANK T'RIALS AND FALSE INFORMATION

We now examine two modifications of the forced-choice detection task
used in the previous experiment. One involves the introduction of blank trials
and the other the use of false-information feedback. By blank trials we mean
that on occasion a trial will occur on which the signal has been omitted entirely;
the subject is not told that blank trials are being introduced and (because of the
forced-choice nature of the task) continues to make A4, and A4, responses. A
blank trial will be denoted as S,. By false-information feedback we mcan that on

some trials the subject will be told that a signal occurred ina particular observation

interval when in fact it did not. The introduction of these two modiﬁcation§ in
the detection task permits us to make some sharp predictions that differentiate
this model from others with similar assumptions: . ) ot

In the present experiment the subject was given the same mstnlx(c.;tnonsur -
were used in the first experiment, i.c., he was told that a signal ‘wo.ud. OCCd =t
every trial and that the information events at the end of each trial in lcatiation
interval in which the signal occurred. Actual{)’» bowever, t}l‘e prej::urred
schedule involved S,, S, and S, type trials; on S, trials an E, al«,‘wa):;iurred .
on S, trials an E, always occurred, and on S, tr Sy i bl (c)haracterized
sometimes £y, The presentation schedule used in this Stll;dg-]c’::n xe a signal was
by the parameters y, 7 and x as follows: () with pro aEl i )::cu):red (b) with
presented in the first interval and, after the respons:le,_ . lrv(;l and followed by
probability x(1 — y) a signal was presented in o
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] ccurred
E,, and (c) with probability 1 —x a blank trial was presentedTTlrLds i;eEI;rgbabilitv
\v?t’h probability 7 and an E, event with probability 1 — 71'}.] rob;bility ' tcllin;:
of presenting a signal in the first intcrva.l was xy; but t; pF S A
the subject that the signal occurred in tbe first mt'crval was r(£, . i);\t.er\'al i
Similarly, the probability of presenting the slgnfll in the selcdonh e
x(1 —7y); however, the probability that the subject was told tha S ';.”w
occurred in the second interval was Pr(E, ) =x(1 —'-y)—i—(l —.-x)(l - ﬂ),' .
model presented earlier is directly applicable to thls-experlment. No m;w
assumnptions are necessary; we nced only apply the axioms a.nd carry out the
appropriate derivations. First of al}, consider the sensory matrix for this experi-
ment. In terms of the assumptions

So 5 33

S;fl—o¢ o 0

S*=S,] 1—-0¢ 0 o

SoL1 0 0

Using the matrix $* and the decision matrix D, specified by eqn. (5), a perfor-
mance matrix P can be derived whose rows are the events S, Sg and S, and
whose columns are the responses 4, and 4,. The entries in the first column of

the matrix P* are
Pr(Hp)=Pr(A, 4 | S, n)=0+(1 — o)pn (15a)
Pr(Fy)=Pr(4,n | Sy.n)=(1 - o)p, (15b)
Pr(Ay,n | So.n)=pn. (15¢

From eqns. (15a) and (15b) it is clear that the ROC curve is the same as onec

given in eqn. (7) for the first experiment. Also, from eqns. (15a) and (15c¢) it

follows that Pr(,) and Pr(Ay n | So.n) are lincarly related as follows:

Pr(H)=o0+(1~0)Pr(A, » | S

| 0.n)- (16)
Equation (9) presented the axj ossible changes inpy. Th

N ”- m
eriment. Given eqn. (9) we
E,n). The tree in Figure 2 describes th ssi : 1n) and (o &
given trial. From the figure we obtain e that ean occur an 4

Pr(SO_n & El,n)=x)’(1 e 0)+(1 ‘x)'ﬂ'
Pr(so,n & Eqm)=x(1- Y(1-0)+ (1-x)1 - )
Pr(otherwise) =xao.
Given thege results
out the derivation,

employed in develop; ;
equatign; eveloping eqn. (10). anOkmg these ar

a? exXpression can be derjved for E(pn). We hall carry
or ' g

It involves precisely the same argument: t}r:m '

] at werc

guments yields the following

E(pn) <po—(po~pyGr-1.
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sl&El

s &E
0 1
A
52&E2
x(1-Y)
sn & E
24 0 =2
+

sO&E1

sO&E2

Ficure 2. A tree describing possible events and their related probabilities for the blank-
trial cxperiment.

Here
G=1-6[xy(1 —0)+(1 =x)m] = 0'[x(1 - y)(1 - 0) +(1 —x)(1-a)],
and
x/(l-a0)+(1—x)m (17)
Po= T =0)+ (1 — X)) +[x(1 = y)(1 - o) + (T —x)(T = =)’

where ¢ =0'/6.

METHOD
e experimental procedures were employed in this st\{dy as in the ﬁrst one
ﬂCtp'lt-hf:Jrs:}':: prel:raining phase. Pretraining took three'days and qulved running e:::al;
subject on the schedule B routine used in tho; first experiment. The'mgnal mten?ltyl o
held fixed throughout the experiment, but during pretraining the cxpcnme;ter m:ntlplzl ded
the noise level in an attempt to establish a signal-to-noise ratio for each subject that yie
e A 8 pe tely 79; the rationale for selecting this particular
8 correct response

tage of approxima ! r
value will be given ll;ct:-l. g';’hc :um'pulation of the noise was done strictly by trial and
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error, but the procedure proved to be quite successful for by the end of pretraining a level
had been established for each subject that yielded a correct r¢$ponse probability fairly close
to the desired value. During the remainder of the experiment the noifie level was fixed for
each subject at the value determined for him during pretraining. Al%o, any subject who
tended to strongly favour one response over the other, during pretraining, was climinated
from the experiment. Only subjects whose overall proportion of A4, re$ponses was between
0-40 and 0-60 for the second and third days of pretraining were included in the main
experiment. Four subjects from a group of 18 were eliminated on thi# basi%. Pretraining,
therefore, involved two special features: (@) noise levels were determined individually for
each subject, and () subjects were eliminated from the experiment who $howed a strong
preference for one of the response alternatives. ‘The first requirement guranteed that the
sensitivity parameter o was approximately the same for all subjects. ‘I'’he sccond insured
that ¢ was fairly close to 1 for all subjects. Thus, in a rough serise, a homogeneous group
of subjects was formed by using this pretraining procedure; homogeneous in the sense that
all subjects were characterized by approximately the same values of o and ¢.

In the experiment proper, four prescentation schedules were used. The probability x
of a signal trial was 0-50 for all schedules, but the schedules differed in the values of y and
7 as follows:

7=0-25 7=0-75
y=025 Schedule A’ Schedule C’
¥=075 Schedule B’ Schedule D’

Test sessions of 400 trials were run on consecutive days. Each day a subject ran on one
of the above presentation schedules for the entire session. In successive 4-day blocks a
subject completed one day on each of the four schedules; within each 4-day block the order
of schedules was randomly determined. The experiment involved 20 test sessions and
therefore each schedule was repeated on five separate days.

RESULTS

Table 3 presents the average proportion of 4, responses conditional upon
the various trial types; these averages are based on 14 subjects. Proportions

TABLE 3. OBSERVED AND PREDICTED VALUES FOR THE BLANK-TRIAL STUDY

Schedule A’ Schedule B’ Schedule C’ Schedule D’
Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred.
Pr(H) 0-641 0672 0-755 0-734 0-820 0-820 0903 0-886
Pr(F) 0086 0-100 0-174 0-162 0-227 0-248 0344 0314
Pr(4,|Sp 0213 0234 0-401 0-378 0-553 0-578 0765 0-733
Pr(4y) 0219 0238 0-505 0-485 0-464 0-484 0-764 0-738

were computed for each subject based on the last 350 trials of replications two
through five of a given presentation schedule; thus the estimates for each subject
are based on a sequence of 4 x 350 =1,4Q0 trials. The averages of these individual
subject proportions are the quantities presented in the table. Although data
were analysed for individual subjects in the first experiment, there is a theoretical
rationale for treating group data in the present experiment. The rationale is
based on the pretraining procedure, which was designed to insure that both ¢
and ¢ would be approximately the same for all subjects. By inspection of
eqns. (15) and (17) we see that Pr(H), Pr(F) and Pr(4,|S,) depend on only
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o and ¢. If o and ¢ are identical for all subjects, then the model makes the same
predictions for the group average as for individual subjects.

Figure 3 presents plots of the observed values of Pr(F) and Pr(F) as given
in Table 3. The theory predicts that these points should fall on a linear curve
with slope 1 and intercept o. We estimated o from these four data points by
using the method of least squares and obtained 6=0-572. This estimate was
used to generate the ROC curve displayed in Figure 3. The four observed points
(one from each schedule) fall fairly close to the predicted line.

Figure 4 presents a plot of Pr(A,|S,) versus Pr(H). As indicated in
eqn. (16) these points should be related by a linear function with slope 1 -0 and
intercept 0. The straight line in Figure 4 was generated using our previous
estimate of 0. Once again the linecar relation seems to be reasonably well
supported.

To generate numerical predictions for Pr(A,|S;) an estimate of ¢ is
required in addition to the estimate of o. [Estimation of this parameter 18
attained using the same method employed earlier. The overall probability of
an A, response is

Pr(4,) =xyPr(A, | S1)+x(1 = y)Pr(A, | Sp)+(1-x)Pr(4, | So)

=axy+(1 —ox)po. (18)
Substituting in the expression for p given in eqn. (17) yields an expression in
¢. For each presentation schedule we have substituted the estimated value of
o and the observed value of Pr(4,) in the above equation and solved for ¢. For
example, for schedule A’ the observed value of Pr(A4,)is 0-219; letting & =0-572,
y=0-25 and w=0-25 in the above equation yields $,.=1-281. Similarly, for
the other schedules we obtain §,=0-969, & =1229 and $,, =0-897. It is
interesting to note that ¢ seems to be correlated more with y than with =
schedules A.' and C’ (y=0-25) both yield §> 1, whereas schedules B’ and D’
(:y=0-'_75) yield § <1. Recall that ¢=20'/6 and that y is the probability of a
signal in the first interval (if there is a signal). ‘The present estimates of ¢ suggest
tchat 6 is greater than 6 if the probability of the signal being in the second
mterval.excecds- 3, whereas the reverse relation holds otherwise. Hence the
change in the bias parameter p, seems to be dominated by the interval with the
bxgher probability of bracketing the signal. Despite this departure from
independence of the parameters ¢ and y, very little damage is done to the accuracy
of the predic?ions from the model, as will be seen shortly.

To obtain an overall estimate of ¢ we have taken the average of the separate

estimates of ¢, i.e.,
$=16r+dp +dc+3y)
=1-094.

With these estimates of o and ¢, e

L th » eqns. (15) and (17) can now be used to generate
predlf:tlon§ for Pr(H), Pr(F), Pr(A, | S,) and Pr(A,). These predicted quantities
are given in Tal.)le 3; they also are displayed in Figures 3 and 4 as cross marks
on the appropriate line segments. There are no constraints on the relations
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imo™ the quintiti®® Pr(A, | S,), Pr(4,|S.) and Pr(d, | So), and therefore
welve independent pre€diction® are being made on the basts of two parameters.
An inspection of the #rray of obscrved and predicted quantities indicates chat
the cor™®pondence Petween theoretical and observed values is quite satisfactory.

FPr both *chedul®® B’ and €’ the £, and F, events occurred equally often,
te,, on both schedules the subject was told (via the trial-to-trial feedback) that
the %£n# waS occurring cqually often in the two observation intervals. However,
the “Enfl actually ocfurred more frequently in the first interval for schedule
B than for %hedule C'. T'hese experimental manipulations are clearly
reflected in the data. On an S, trial the probability of an A, response was
greater for schedule C’ than for schedule B® (0-553 ws. 0-401), whereas over all
tnals the probability of &n A, response was greater for schedule B’ than for
schedule C* (0-505 vs. 0-464). Both of these relations are predicted by the model.

Sequential Effects

The model predicts not only hit and falsc-alarm rates but also sequential
propertits of response protocols. In terms of the axioms, sequential effects in
the obstrvable response cvents are produced by trial-to-trial fluctuations in
ps- Such fluctuations, of course, can take place on any trial and are not restricted
to pre-asymptotic data. For example, even at asymptote the likelihood of making
acorrect response to an S, stimulus depends in a very definite way on whether an
E or an Eq occurred on the preceding trial.  T'he sequential effects of partic-
ular interest deal with the influence of stimulus and response events on trial n
as they influence the response on trial n+ 1; specifically

P’(Al.ml | Sl.n+1 Al.n Sl‘.n)-

However, we shall not examine the correspondence between these p_articular
sequential effects and theoretical predictions, becausce there are 18 such {ndepen-
dent quantities for each of the experimental conditions and the analysis would
ivolve too much detail. Rather, we consider Pr(4, 41 | .E'-") et
P'(Al.--x IEg,) For these probabilitics the stimulus.events on trials 7 and
n+1 are suppressed, and we only ask for the overall 1ikehl}ood of an A4, res;;gnse
cnditional on the information event of the preceding trial. The 4, cou 'el
dicited by S, S,, or S, on trial # + 1; similarly the information eventAEl O“tt;:?c
*could follow an S, or S, stimulus, and the E, an Sp or So St'mu}l\uiﬁ osr?mé)ower
“pressions for these quantities can be readily obtained (see Atkinson,

ad Crothers, 1965) and are as follows:
. (1 —x)+xy(1—0)

ll‘n% P’(AI.--HIEI,-)"P'(Al)+(1 — ox)8(1 —P=) w(1 —x)+xy (19)
: (1 =m(1—x)+x(1—y)(1=9)

in Pr(4,,,,|E,,) = Pr(4)—(1 — o) 0P (1—m(1—»)+x(1-7)

’

"hﬂ'CP. ig given by eqn. (17) and PV(AI) b)’ eqn. (18).
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Table 4 presents the observed values for Pr(A, a4 |F,(;) 1ndu§‘e(ct;’-"t}‘,e|
E,,). Estimates of these quantitics were obtained for lnql\l ua sbl ) T,hese
a:gre;ge of these estimates are the quantities presented 1n the table.

TABLE 4. OBSERVED AND PREDICTED SEHQUENTIAL QUANTITIES FOR THE BLANK-TRIAL STUDY
Schedule A’ Schedule I}’ Schedule C’ Schedule D
Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred.

lim Pr(Ay e | Evn) 0255 0267 0-529 0-503 0:475 0503 0784 0748
"tim Pr(Aynes | Eag) 0207 0220 0-482 0466 0-453 0-466 0716 0708
n-+ 0 ’ 4

estimates are based on the same set of trials as the data pre§ented in Table 3
and thercfore will be regarded as asymptotic. The above equations can be use-d to
generate predictions for these observed values. By inspection of th(? equations
we see that values are needed for o, # and 8’ in order to make numerical predic-
tions. Since estimates of o and ¢ have already been made, it is only necessary
to estimate '; that is, if we fix on some value of & then 6 is determined because
6’60 must equal the previous estimate of ¢ =1-094. For present purposes, one
method for estimating 6’ is to select its value so a8 to minimize the sum of
squared deviations between the eight predicted and observed quantities displayed
in Table 4. T'o carry out this minimization analytically yields unwieldy expres-
sions, and to avoid this complication we have simply calculated the sum of the
eight squared deviations for ' ranging from 0-01 to 1-00 in successive increments
of.O:Ol. Over this range of values the sum of squared deviations takes on its
minimum when 6'=0-08. ‘This value of 8 was used to generate the predictions

in Table 4.
_I? ge'neral, the correspondence between predicted and observed sequential
kept i mind that all of e quanties . (oe e ey i should be
o Mgty i, q s In the table are independent, and thus
t g egrees of freedom. The model requires that Pr(4,,.,|E,.,)
W K|

>Pr(A))>Pr(4,,,, | E;,), and this relation is supported by all four sets of
dSata. Also the model requires that Pr(A4, .., |S, E,,)>Pr(4 ) 0|
d;':;lin{:‘:,.t)hforfx=0,.l, 2 Although not presented hcre;"zlbr;;kdown <l)f'l ;}lxc

s form indicates that these inequalities hold i
mental conditions. £veh-Rll four cxperiz

5. Discussion

An alternative model for the bias
appeal involves trial-by
information events E

_ process th
-trial changes in p_ that

1and E,. Formally stated, t

at has considerable intuitive

are determined
he idea is that A O
p.. = {(1=6pnt6, ifE
"l -0)a,  ifE,. (20)
Thi 2 ! 4 2
4 nltsr :;;?ulgt;:m of the bias process (which will b:, called
with eqn. (9) (Model 1), where changes in ed Model 2) is to be

Pa can occur only when



A Learning Model for Forced-Choice Detection Experiments 203

sensory State %, is activated. In spite of the difference between these two sets
of assumptions, the models yield identical predictions in the first experiment for
the asymptotic probabilities of Pr(/), Pr(F), Pr(A,) and Pr(C). Only by a
detailed analysis of sequential statistics and pre-asymptotic data can it be shown
that Model 1 is slightly better than Model 2.

However, the two models make strikingly different predictions in the second
experiment even for asymptotic hit and false-alarm proportions. For example,
applying Model 2 to the false-information study yields
= xy+(l=x)m

¥y + (1 =2) 7] + [x(1 = y) + (1 = x)(1 = m)}¢

From this equation, we see that p_ is identical for both schedules B” and C’ of
the second experiment; whereas, using Model 1, p_. is greater for schedule C’
than for schedule B’. ‘T'his relation, of course, is reflected in Pr(f), and Pr(F)
and Pr(4, | §,). For Model 2

PrV(H) = Pr(H)

Pr¥(F)=P"(F)

PrP(A, | S)=Pr(A4, | So)

where Pr¥(If) denotes the asymptotic probability of a hit on schedule B’, etc.
In contrast, for Model 1

Pe

Pr(H) < Pr°(H)
Pr¥(F) < Pr°(F)
Pr¥(A, | So) <Pr€(A4, | S,)-
The inequalities predicted by Model 1 for schedules B’ and C’ are borne out t;();
the group averages presented in "T'able 3; it also is the case that the relations ho
individually for all 14 subjects. - AR,
To further illustrate the differential predictions of Models 1 an mh

second experiment, we have plotted iso-bias curves in Figure 5 for the case where

Modet I
Model I

PrP)

FiGure 5. Iso-bias curves for Models 1 and 2.
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. i i 11 four
: . straight line for a =
¢=1. Note that the iso-bias curve for Model 2 is 2 hedules B’ and C
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’
i lodel 1 schedules B
same as for Model 2; however, under the assumptions of M .
i _lincar curves. !
C' generate different, non lincar cu ' - ita
e U-:igng Model 1, a distance function can be dcﬁn‘cld ?;:wccn c.(;:lrers: or; th‘i
ints i i ' lules B and C. he maximu
oints on the jso-bias curves for sFI\Ct es ! . \
?unction can be obtained by taking its derivative with rc.spect to o and setting the
result equal to Zero. Carrying out these operations yiclds

0-2— \/220'5‘).

Therefore, under the assumptions of Model 1, the maximum difference ,bet_“'Cl‘n
corresponding points on the iso-bias functions of schedules B’ and C’ will .bC
observed when o is approximately 0-59. One of the principal reasons for running
the second experiment was to Jdetermine whether such a difference would be
observed. Therefore, to maximize the likelihood of discovering an effect if it
existed, we wanted to set the signal-to-noise level at a value corresponding to 2
o of 0:59. Recall that pretraining involved only S, and S, trials, and they were
presented with equal likelihood; hence Pr(C)=0+(1—-0)}. Consequently to
fix o at approximately 0-59 required adjusting the noise level during pretraining
to yield a correct-responsc probability of approximately 0:79 ~0-59 + (0-41)}.
The prctraining procedu.re was fairly successful, inasmuch as the estimate of
c durmgbth?‘ac;ua}: experiment was 0-572.
In both of the experiments reported in this i ‘

o:)tailned on each trial. The rcspongc-timc data larepirc):;;:;fgor;ze?]r;\:sn:;:::
clearly affected by the presentation schedule. For example, in the first experi-

ment the time fOl‘ an inCOl'l T ‘) 5 t .I;()
. mseccC longer than fOl’ a

AISO, the (&3 i 1 p I)p

A ponsc time f()r an 1Inc T

¢ T . orrect esponse a ear Cd

to ‘)e "ldcpendent Of the Stlmullls I)l c¢scentation s C"\cdule W]]el €as the time fOI a
’

correct response decreased somewhat as y i
“apec” S pore ‘ as y 1ncrgascd. An attractive fe
Thepgenera“zatizlnlsisth:itmlt lcar: be easily gencralized to treat responsc-ti::eu:i':at.;f
S sensopy o assume that response time on a given trial s
S ry state activated on the trial. Mor i - -
nsory state s¢ ({=0, 1, 2) occurs on trial LN
n, then the response-time

. . . . oqge &

dlst‘lbuthIl f0K tl\at [llal ‘las )lol)ablllt dcll'Q|ty { t \\rlth () th
l y - mean t(. n (d

DASLS Di thls ass LllllptIOll a Illl]lll)e! Of pltdlc{lon ‘ cjx‘ls\ )b

events on the current tri ¢ deriv i
time. For example tintn:l (gnd on preceding trials) as thzrl".ed concerning the
conditional !‘CSpe‘Zti;el the first experiment the mean ag my lnﬂucnce response
y on a correct and incorrect res ymptotic response times
ponse are as f
ollows:

B(T | )= T+ (=Nt + (1 =0) [p, +(1
o+ (1~ ot {1 —)(1-
E(T )\ C)=t, +(1=o)yp.+ (T:W:Eﬁ—_&)_]‘t"’

If 1 t Ollal re -
1 tZ < to then the iti asu t
< S€ Condl 1 Sponsc timc me c)
res are 1
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ordered as y increases. We are currently analy sing an experiment specifically
designed to evaluate the response-time assumption outlined above. The analyses
are still incomplete, but it appears that if parameter estimates are made from
the time distributions conditional on correct and incorrect responses, then
reasonably accurate predictions can be made for distributions conditional on
responses and signal events of the current trial (and the immediately preceding
wial), This approach to response times nceds more exploration but appears
promising.

The experiments and model analyses considered in this paper have been
confined to symmetric outcome structures involving no explicit payoffs. If we
were to generalize the model to situations involving manipulation of monctary
payoffs then it would be necessary to offer a more gencral theory of the decision
process. Obviously there are outcome structures that will displace the subject
off the linear ROC curve specified by eqn. (7). For example, consider the payoff
matrix

4, 4,
Si[-1  +10
s,[+10 -1 .

In this case the subject is heavily rewarded for incorrect detection responses and
penalized for correct ones. Undoubtedly, over time the subject would generate
a point [Pr(F), Pr(11)] that fell in the lower right-hand scctor of the ROC space;
ie, Pr(F)> Pr(H). ~ Such effects cannot be predicted mercly by generalizing
the assumptions governing p,. No matter how p,, is permitted to vary, the model
still requires that performance points fall on a linear curve with intercept o. of
course, several modifications of the theory seem able to account for experimental
manipulations that generate performance points off the ROCcurve. One appro:ich
is to develop a more elaborate conceptualization of the decision process. Ior
example, one can redefine the decision matrix as
A, As
Sof Pn 1=pn
Dp=s,| d{ 1-dV
sq 1 _d'(.z) d'(.ﬁ)

For this process experimental manipulations‘of the outcome st::ztu;zts:;tg:;
affect not only p, but also the values of d¢”. Thus, .,.|epcndmg:"te Vir‘:ually any
relation of d to the payoff matrix it woul(.! be.p(?ssxbi;t todgen en:)btains w
ROC curve. When this type of modification is intro ucg_ g ination learning
that is very close in structure to those proposed ay Rlscnml%‘t) Another
(Atkinson and Estes, 1963, p.238; Bush, Biateion dose'l a m.orc general
possible modification of the detection mode! “'oul.d b'e - even(:i‘;ht assume that
formulation of the sensory process. Pursuing this h-nef,iO:de limits as a function
the subject’s sensitivity level could vary within certamh X tornatives represent
of the outcome structure and other variables. Both of these a
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i raise
ial lines of theoretical devclopment for modecls of ‘h-“dt)[;pc.ma’rn}iwl{laﬁon
an important question: can changes in performance induce 1 y & {)he uon
of the outcome structure be explained by claborating the t coryl e
process, or do they also necessitate  postulaing a more complex y

mechanism?

potent
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